【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點(diǎn)C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,且PE.
(1)求證:平面PBC 平面DEBC;
(2)求三棱錐P-EBC的體積.
【答案】(1)見(jiàn)解析; (2).
【解析】
(1)根據(jù)折疊前后關(guān)系得PC⊥CD,根據(jù)平幾知識(shí)得BE//CD,即得PC⊥BE,再利用線面垂直判定定理得EB⊥平面PBC,最后根據(jù)面面垂直判定定理得結(jié)論,(2)先根據(jù)線面垂直EB⊥平面PBC得高,再根據(jù)等積法以及三棱錐體積公式得結(jié)果.
(1)證明:∵AB⊥BE,AB⊥CD,∴BE//CD,
∵AC⊥CD,∴PC⊥CD,∴PC⊥BE,
又BC⊥BE,PC∩BC=C,
∴EB⊥平面PBC,
又∵EB平面DEBC,∴平面PBC 平面DEBC;
(2)解法1:∵AB//DE,結(jié)合CD//EB 得BE=CD=2,
由(1)知EB⊥平面PBC,∴EB⊥PB,由PE得,
∴△PBC為等邊三角形, ∴,
∴ .
解法2:∵AB//DE,結(jié)合CD//EB 得BE=CD=2,
由(1)知EB⊥平面PBC,∴EB⊥PB,由PE,
得, ∴△PBC為等邊三角形,
取BC的中點(diǎn)O,連結(jié)OP,則,∵PO⊥BC,∴PO⊥平面EBCD,
∴ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,平面平面,△ABC為等腰三角形,為的中點(diǎn),為的中點(diǎn),且,.
(Ⅰ)證明:平面;
(Ⅱ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,圓.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,直線經(jīng)過(guò)點(diǎn)且傾斜角為.
求圓的直角坐標(biāo)方程和直線的參數(shù)方程;
已知直線與圓交與,,滿足為的中點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌經(jīng)銷商在一廣場(chǎng)隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過(guò)6小時(shí)的用戶稱為“微信控”,否則稱其“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從采訪的女性用戶中按分層抽樣的方法選出10人,再?gòu)闹须S機(jī)抽取3人贈(zèng)送禮品,求抽取3人中恰有2人為“微信控”的概率.
參考數(shù)據(jù):
P() | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求的值及函數(shù)的單調(diào)區(qū)間;
(2)若的極大值和極小值分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:相關(guān)系數(shù)用來(lái)衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱,越接近于1,相關(guān)性越弱;回歸直線過(guò)樣本點(diǎn)中心;相關(guān)指數(shù)用來(lái)刻畫(huà)回歸的效果,越小,說(shuō)明模型的擬合效果越不好.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長(zhǎng)軸長(zhǎng)為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com