【題目】如圖,在五面體ABCDEF中,點O是矩形ABCD的對角線的交點,面CDE是等邊三角形,棱。
(1)證明FO∥平面CDE;
(2)設(shè)BC=CD,證明EO⊥平面CDE。
【答案】(1)證明見解析;(2) 證明見解析;
【解析】
(1)利用中點做輔助線,構(gòu)造出平行四邊形即可證明線面平行;(2)根據(jù)所給條件構(gòu)造出菱形,再根據(jù)兩個對應(yīng)的線段垂直關(guān)系即可得到線面垂直.
證明:(1)取CD中點M,連結(jié)OM,連結(jié)EM,
在矩形ABCD中,又,
則,于是四邊形EFOM為平行四邊形。
∴FO∥EM.
又∵FO平面CDE,且EM平面CDE,
∴FO∥平面CDE。
(2)連結(jié)FM,
由(1)和已知條件,在等邊ΔCDE中,CM=DM,EM⊥CD
且
因此平行四邊形EFOM為菱形,從而EO⊥FM.
∵CD⊥OM,CD⊥EM
∴CD⊥平面EOM,
從而CD⊥EO.
而FMCD=M,所以EO⊥平面CDF.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函數(shù)y=f(x)的值域
(2)若f(x)在區(qū)間 上為增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足.當(dāng)時,,當(dāng)時,,則f(1)+f(2)+…+f(2015)=( )
A. 333 B. 336 C. 1678 D. 2015
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2sin θ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A、B,若點P的坐標(biāo)為(3,),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進價是30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價元與日銷售量件之間有如下關(guān)系:
x | 45 | 50 |
y | 27 | 12 |
(1)確定與的一個一次函數(shù)關(guān)系式;
(2)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當(dāng)銷售單價為多少元時,才能獲得最大的日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是()
A. 銳角是第一象限的角,所以第一象限的角都是銳角;
B. 如果向量,則;
C. 在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;
D. 若,都是單位向量,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,點到拋物線的準(zhǔn)線的距離為.點是上的定點,,是上的兩動點,且線段的中點在直線上.
(Ⅰ)求曲線的方程及的值;
(Ⅱ)記,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com