已知橢圓C的兩個(gè)焦點(diǎn)是)和,并且經(jīng)過(guò)點(diǎn),拋物線的頂點(diǎn)E在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F
(1)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求的最小值.
(1)橢圓C的標(biāo)準(zhǔn)方程為,拋物線E的標(biāo)準(zhǔn)方程為.(2)有最小值為16.

試題分析:(1)由于橢圓上任意一點(diǎn)到焦點(diǎn)的距離都等于,所以,
,由此即得橢圓的標(biāo)準(zhǔn)方程.橢圓右頂點(diǎn)F的坐標(biāo)為(1,0),所以拋物線E的標(biāo)準(zhǔn)方程為.(2)設(shè),,,則 
.再設(shè)l1的方程:,l2的方程,用韋達(dá)定理將上式表示為即可求得其最小值.
試題解析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為(a>b>0),焦距為2c,
則由題意得c=,
,
∴橢圓C的標(biāo)準(zhǔn)方程為.         4分
∴右頂點(diǎn)F的坐標(biāo)為(1,0).
設(shè)拋物線E的標(biāo)準(zhǔn)方程為,∴ ,
∴拋物線E的標(biāo)準(zhǔn)方程為.      6分
(2)設(shè)l1的方程:,l2的方程,
,,,,
消去y得:,

消去y得:,
     9分







當(dāng)且僅當(dāng)時(shí),有最小值16.  13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,直線相交于、兩點(diǎn),軸、軸分別相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線的方程為,求外接圓的方程;
(2)判斷是否存在直線,使得、是線段的兩個(gè)三等分點(diǎn),若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線,垂足為C,連結(jié)AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.

(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;
(3)對(duì)任意k>0,求證:PA⊥PB..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

(1)求橢圓C的方程;
(2)己知點(diǎn)P(2,3),Q(2,-3)在橢圓上,點(diǎn)A、B是橢圓上不同的兩個(gè)動(dòng)點(diǎn),且滿足APQ=BPQ,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E:+y2=1(a>1)的上頂點(diǎn)為M(0,1),兩條過(guò)M的動(dòng)弦MA、MB滿足MA⊥MB.
(1)當(dāng)坐標(biāo)原點(diǎn)到橢圓E的準(zhǔn)線距離最短時(shí),求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對(duì)于給定的實(shí)數(shù)a(a>1),動(dòng)直線AB是否經(jīng)過(guò)一定點(diǎn)?如果經(jīng)過(guò),求出定點(diǎn)坐標(biāo)(用a表示);反之,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過(guò)橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T(mén),且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且+5=0.
 
(1)求橢圓E的離心率; (2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F1、F2是橢圓C的左、右焦點(diǎn),點(diǎn)P在橢圓上,且滿足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓,是橢圓長(zhǎng)軸的一個(gè)端點(diǎn),是橢圓短軸的一個(gè)端點(diǎn),為橢圓的一個(gè)焦點(diǎn).若,則該橢圓的離心率為 ( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案