已知橢圓E:+y2=1(a>1)的上頂點為M(0,1),兩條過M的動弦MA、MB滿足MA⊥MB.
(1)當(dāng)坐標原點到橢圓E的準線距離最短時,求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對于給定的實數(shù)a(a>1),動直線AB是否經(jīng)過一定點?如果經(jīng)過,求出定點坐標(用a表示);反之,說明理由.
(1)+y2=1.(2)a=3(3)
(1)由題,a2=c2+1,d==c+≥2,當(dāng)c=1時取等號,此時a2=1+1=2,故橢圓E的方程為+y2=1.
(2)不妨設(shè)直線MA的斜率k>0,直線MA方程為y=kx+1,由
①代入②整理得(a2k2+1)x2+2a2kx=0,
解得xA=-,故A,
由MA⊥MB知直線MB的斜率為-,可得B,
則MA=,MB=.
則S△MABMA·MB=(1+k2)
.
令k+=t(t≥2),
則S△MAB.
當(dāng)t=時取“=”,∵t=≥2,得a>+1.而(S△MAB)max,故a=3或a=(舍).綜上a=3.
(3)由對稱性,若存在定點,則必在y軸上.
當(dāng)k=1時,A,直線AB過定點Q.下面證明A、Q、B三點共線:
∵kAQ,
kBQ.
由kAQ=kBQ知A、Q、B三點共線,即直線AB過定點Q.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

巳知橢圓的離心率是.
⑴若點P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過點A(1,0)的直線,使點C(2,0)關(guān)于直線的對稱點在橢圓上,求橢圓的焦距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1,C2. 設(shè)點P的軌跡為
(1)求C的方程;
(2)設(shè)直線與C交于A,B兩點.問k為何值時?此時的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C0=1(a>b>0,a、b為常數(shù)),動圓C1:x2+y2,b<t1<a.點A1、A2分別為C0的左、右頂點,C1與C0相交于A、B、C、D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2:x2+y2與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)E:=1(a>b>0)的焦點為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩個焦點是)和,并且經(jīng)過點,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F
(1)求橢圓C和拋物線E的標準方程;
(2)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點GH,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過且與橢圓長軸垂直的直線交橢圓于A、B兩點,若是正三角形,則這個橢圓的離心率是(     )
A.    B.    C.     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點A(0,1)是橢圓上的一點,P點是橢圓上的動點,
則弦AP長度的最大值為(   )
A.B.2C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC的頂點B、C在橢圓+y2=1上,頂點A與橢圓的焦點F1重合,且橢圓的另外一個焦點F2在BC邊上,則△ABC的周長是________.

查看答案和解析>>

同步練習(xí)冊答案