【題目】若圓關(guān)于直線對稱,則的最小值為__________.由點向圓所作兩條切線,切點記為,當(dāng)取最小值時,外接圓的半徑為__________.
【答案】
【解析】分析:首先根據(jù)圓關(guān)于直線對稱,可得直線過圓心,將圓的一般方程化為標(biāo)準(zhǔn)方程,得到圓心坐標(biāo),代入直線方程,求得,之后將其轉(zhuǎn)化為關(guān)于b的關(guān)系式,配方求得最小值,通過分析圖形的特征,求得什么情況下是該題所要的結(jié)果,從而得到圓心到直線的距離即為外接圓的直徑,進一步求得其半徑.
詳解:由可得,
因為圓關(guān)于直線對稱,所以圓心在直線上,
即,化簡得,
則有,所以有的最小值為;
根據(jù)圖形的特征,可知PC最短時,對應(yīng)的最小,
而PC最短時,即為C到直線的距離,
即,此時A,B,P,C四點共圓,
此時PC即為外接圓的直徑,所以其半徑就是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某城市環(huán)保局從該市市區(qū)2017年上半年每天的監(jiān)測數(shù)據(jù)中隨機抽取18天的數(shù)據(jù)作為樣本,將監(jiān)測值繪制成莖葉圖如下圖所示(十位為莖,個位為葉).
(1)求這18個數(shù)據(jù)中不超標(biāo)數(shù)據(jù)的平均數(shù)與方差;
(2)在空氣質(zhì)量為一級的數(shù)據(jù)中,隨機抽取2個數(shù)據(jù),求其中恰有一個為日均值小于30微克/立方米的數(shù)據(jù)的概率;
(3)以這天的日均值來估計一年的空氣質(zhì)量情況,則一年(按天計算)中約有多少天的空氣質(zhì)量超標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司生產(chǎn)得到襯衫,每件定價80元,在某城市年銷售8萬件,現(xiàn)在該公司在該市設(shè)立代理商來銷售襯衫代理商要收取代銷費,代銷費為銷售金額的%(即每銷售100元收取元),為此,該襯衫每件價格要提高到元才能保證公司利潤.由于提價每年將少銷售萬件,如果代理商每年收取的代銷費不小于16萬元,則的取值范圍是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.
試判斷是否為“函數(shù)”,并說明理由;
函數(shù)為“函數(shù)”,且當(dāng)時,,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;
在條件下,當(dāng)時,關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線x﹣2y﹣3=0上,并且經(jīng)過A(2,﹣3)和B(﹣2,﹣5),求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2.
表1
停車距離(米) | |||||
頻數(shù) | 24 | 42 | 24 | 9 | 1 |
表2
平均每毫升血液酒精含量毫克 | 10 | 30 | 50 | 70 | 90 |
平均停車距離米 | 30 | 50 | 60 | 70 | 90 |
回答以下問題.
(1)由表1估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(2)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算關(guān)于的回歸方程;
(3)該測試團隊認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(1)中無酒狀態(tài)下的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請根據(jù)(2)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時為“醉駕”?(精確到個位)
(附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)若,是函數(shù)的兩個不同零點,求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若對任意時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對下列命題:
①直線與函數(shù)的圖象相交,則相鄰兩交點的距離為;
②點 是函數(shù)的圖象的一個對稱中心;
③函數(shù)在上單調(diào)遞減,則的取值范圍為;
④函數(shù)若對R恒成立,則.
其中所有正確命題的序號為____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com