【題目】對(duì)下列命題:
①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;
②點(diǎn) 是函數(shù)的圖象的一個(gè)對(duì)稱(chēng)中心;
③函數(shù)在上單調(diào)遞減,則的取值范圍為;
④函數(shù)若對(duì)R恒成立,則.
其中所有正確命題的序號(hào)為____
【答案】①②③
【解析】
根據(jù)三角函數(shù)的圖像與性質(zhì)分別進(jìn)行判斷即可:①根據(jù)正切函數(shù)的周期為即可判斷;②根據(jù)正切的中心對(duì)稱(chēng)點(diǎn)即可判斷;③根據(jù)余弦函數(shù)的單點(diǎn)遞減區(qū)間即可判斷;④由正弦函數(shù)的最值以及的取值范圍即可判斷;
對(duì)于①,函數(shù)的周期為,故①正確;
對(duì)于②,函數(shù),令,
解得,所以函數(shù)的中心對(duì)稱(chēng)點(diǎn)為,
當(dāng)時(shí),,故點(diǎn)是函數(shù)的一個(gè)對(duì)稱(chēng)中心,故②正確;
對(duì)于③,,周期,即,,
當(dāng)時(shí),,
即,
,解得,故③正確;
對(duì)于④,由題意可得,即,
解得,又因?yàn)?/span>,所以或,故④錯(cuò)誤;
故答案為:①②③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓關(guān)于直線對(duì)稱(chēng),則的最小值為__________.由點(diǎn)向圓所作兩條切線,切點(diǎn)記為,當(dāng)取最小值時(shí),外接圓的半徑為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)2018年招聘員工,其中,,,,五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性 應(yīng)聘人數(shù) | 男性 錄用人數(shù) | 男性 錄用比例 | 女性 應(yīng)聘人數(shù) | 女性 錄用人數(shù) | 女性 錄用比例 |
269 | 167 | 40 | 24 | |||
40 | 12 | 202 | 62 | |||
177 | 57 | 184 | 59 | |||
44 | 26 | 38 | 22 | |||
3 | 2 | 3 | 2 | |||
總計(jì) | 533 | 264 | 467 | 169 |
(1)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;
(2)從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)表中,,,,各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫(xiě)出這四種崗位.(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∪B=A,求實(shí)數(shù)m的取值;
(2)若A∩B={x|0≤x≤3},求實(shí)數(shù)m的值;
(3)若A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為 .
(1)求橢圓的方程;
(2)若上存在兩點(diǎn),橢圓上存在兩個(gè)點(diǎn)滿(mǎn)足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿(mǎn)足.
(1)求函數(shù)f(x)和g(x)的表達(dá)式;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;
(3)若方程在上恰有一個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛(ài)我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績(jī)是[40,50)和[90,100]的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)已成為一種時(shí)髦的新型環(huán)保交通工具,某共享單車(chē)公司為了拓展市場(chǎng),對(duì)兩個(gè)品牌的共享單車(chē)在編號(hào)分別為的五個(gè)城市的用戶(hù)人數(shù)(單位:十萬(wàn))進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:
城市 品牌 | 1 | 2 | 3 | 4 | 5 |
A品牌 | 3 | 4 | 12 | 6 | 8 |
B品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享單車(chē)用戶(hù)人數(shù)超過(guò)50萬(wàn)的城市稱(chēng)為“優(yōu)城”,否則稱(chēng)為“非優(yōu)城”,據(jù)此判斷能否有85%的把握認(rèn)為“優(yōu)城”和共享單車(chē)品牌有關(guān)?
(Ⅱ)若不考慮其它因素,為了拓展市場(chǎng),對(duì)A品牌要從這五個(gè)城市選擇三個(gè)城市進(jìn)行宣傳,
(。┣蟪鞘2被選中的概率;
(ⅱ)求在城市2被選中的條件下城市3也被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)的圖像與軸無(wú)交點(diǎn),求的取值范圍;
(2)若方程在區(qū)間上存在實(shí)根,求的取值范圍;
(3)設(shè)函數(shù),,當(dāng)時(shí)若對(duì)任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com