分析 由已知利用兩角和的正弦函數(shù)公式可求$f(x)=3sinx-cosx=\sqrt{10}sin(x-φ)$,由sin(θ-φ)=-1,可求$θ-φ=-\frac{π}{2}+2kπ$,利用誘導公式即可計算得解.
解答 解:∵$f(x)=3sinx-cosx=\sqrt{10}sin(x-φ)$,其中$cosφ=\frac{{3\sqrt{10}}}{10},sinφ=\frac{{\sqrt{10}}}{10}$,
又∵由題sin(θ-φ)=-1,
∴則$θ-φ=-\frac{π}{2}+2kπ$,
∴$sinθ=sin(φ-\frac{π}{2})=-cosφ=-\frac{{3\sqrt{10}}}{10}$.
故答案為:$-\frac{{3\sqrt{10}}}{10}$.
點評 本題主要考查了兩角和的正弦函數(shù)公式,誘導公式,正弦函數(shù)的圖象和性質(zhì)的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
x | 4 | 2 | 3 | 5 |
y | 49 | m | 39 | 54 |
A. | 27.9 | B. | 25.5 | C. | 26.9 | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x(℃) | 300 | 400 | 500 | 600 | 700 | 800 |
y(%) | 40 | 50 | 55 | 60 | 67 | 70 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-∞,\frac{3}{2}]$ | B. | $[\frac{3}{2},+∞)$ | C. | (-∞,-1] | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{8}{9}$ | C. | $\frac{3}{7}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com