【題目】某學(xué)校藝術(shù)專業(yè)300名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的300名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
【答案】(1)0.4 (2)15人 (3)3∶2
【解析】
(1)根據(jù)頻率分布直方圖求出樣本中分?jǐn)?shù)小于70的頻率,用頻率估計概率值;
(2)計算樣本中分?jǐn)?shù)小于50的頻率和頻數(shù),估計總體中分?jǐn)?shù)在區(qū)間,內(nèi)的人數(shù);
(3)由題意計算樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)以及男生、女生人數(shù),求男生和女生人數(shù)的比例.
解:(1)根據(jù)頻率分布直方圖可知,樣本中分?jǐn)?shù)不小于70的頻率為(0.02+0.04)×10=0.6,
所以樣本中分?jǐn)?shù)小于70的頻率為1-0.6=0.4.
所以從總體的300名學(xué)生中隨機(jī)抽取一人,其分?jǐn)?shù)小于70的概率估計值為0.4.
(2)根據(jù)題意,樣本中分?jǐn)?shù)不小于50的頻率為 (0.01+0.02+0.04+0.02)×10=0.9,
故樣本中分?jǐn)?shù)小于50的頻率為0.1,
故分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù)為100×0.1-5=5.
所以總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù)估計為.
(3)由題意可知,樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)為
(0.02+0.04)×10×100=60,
所以樣本中分?jǐn)?shù)不小于70的男生人數(shù)為.
所以樣本中的男生人數(shù)為30×2=60,
女生人數(shù)為100-60=40,
男生和女生人數(shù)的比例為60∶40=3∶2.
所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計為3∶2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場從2018年1月份起的前這個月,顧客對某商品的需求總量,(單位:件)與x的關(guān)系近似地滿足(其中,且),該商品第x月的進(jìn)貨單價(單位:元)與x的近似關(guān)系是.
(1)寫出2018年第x月的需求量(單位:件)與x的函數(shù)關(guān)系式;
(2)該商品每件的售價為185元,若不計其他費(fèi)用且每月都能滿足市場需求,試問該商場2018年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn), 是上異于,的點(diǎn), .
(1)證明:平面平面;
(2)若點(diǎn)為半圓弧上的一個三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若是的極值點(diǎn),且曲線在兩點(diǎn), 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)設(shè)是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若有兩個不同的零點(diǎn)和,且,
(i)求參數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機(jī)抽取個,利用水果的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級 | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個水果中有放回地隨機(jī)抽取個,求恰好有個水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)
(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.
方案:不分類賣出,單價為元.
方案:分類賣出,分類后的水果售價如下:
等級 | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(元/kg) | 16 | 18 | 22 | 24 |
從采購單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個水果中抽取個,再從抽取的個水果中隨機(jī)抽取個,表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)函數(shù)f(x)=alnx﹣bx2(x>0).
(1)若函數(shù)f(x)在x=1處于直線相切,求函數(shù)f(x)在上的最大值;
(2)當(dāng)b=0時,若不等式f(x)≥m+x對所有的a∈[1,],x∈[1,e2]都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,為等邊三角形,,,與平面所成角的正切值為.
(Ⅰ)證明:平面;
(Ⅱ)若是的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com