【題目】某商場從20181月份起的前這個月,顧客對某商品的需求總量,(單位:件)與x的關系近似地滿足(其中,且),該商品第x月的進貨單價(單位:元)與x的近似關系是

1)寫出2018年第x月的需求量(單位:件)與x的函數(shù)關系式;

2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2018年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?

【答案】(1)

(2)第5個月的月利潤最大,最大月利潤為3125

【解析】

1)當時,由,得;當,由,得,最后要檢驗時是否滿足解析式;

2)分別算出當時和當時的最大值,比較大小,即可得到本題答案.

解:(1)當時,

,

驗證時也符合上式,

2)預計該商場第x個月銷售該商品的月利潤為

時,,

,解得(舍去).

時,

時,是減函數(shù),

答:該商場2018年第5個月的月利潤最大,最大月利潤為3125元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,長軸長為4,離心率為.過右焦點的直線交橢圓兩點(均不與重合),記直線的斜率分別為.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在常數(shù),當直線變動時,總有成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形都是直角梯形,,,,,,,的中點。

(1)求證:;

(2)已知的中點,求證:;

(3)求直線與平面所成角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)設曲線交于,兩點,點,若,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年“雙十一”當天,甲、乙兩大電商進行了打折促銷活動,某公司分別調查了當天在甲、乙電商購物的1000名消費者的消費金額,得到了消費金額的頻數(shù)分布表如下:

甲電商:

消費金額(單位:千元)

[0,1

[12

[2,3

[34

[4,5]

頻數(shù)

50

200

350

300

100

乙電商:

消費金額(單位:千元)

[0,1

[12

[2,3

[3,4

[4,5]

頻數(shù)

250

300

150

100

200

(Ⅰ)根據頻數(shù)分布表,完成下列頻率分布直方圖,并根據頻率分布直方圖比較消費者在甲、乙電商消費金額的中位數(shù)的大小以及方差的大小(其中方差大小給出判斷即可,不必說明理由);

(Ⅱ)(。└鶕鲜鰯(shù)據,估計“雙十一”當天在甲電商購物的大量的消費者中,消費金額小于3千元的概率;

(ⅱ)現(xiàn)從“雙十一”當天在甲電商購物的大量的消費者中任意調查5位,記消費金額小于3千元的人數(shù)為X,試求出X的期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經濟全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉向人才的競爭.吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標和緊迫任務.在此背景下,某信息網站在15個城市中對剛畢業(yè)的大學生的月平均收入薪資和月平均期望薪資做了調查,數(shù)據如圖所示.

1)若某大學畢業(yè)生從這15座城市中隨機選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;

2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在菱形中,,的中點,以為折痕,將折起,使點到達點的位置,且平面平面,如圖2.

(1)求證:

(2)若的中點,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校藝術專業(yè)300名學生參加某次測評,根據男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據分成7組:[20,30)[30,40),[8090],并整理得到如下頻率分布直方圖:

(1)從總體的300名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[4050)內的人數(shù);

(3)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

同步練習冊答案