【題目】如圖,三棱錐中,平面,,中點(diǎn),下列說(shuō)法中

1;

2)記二面角的平面角分別為;

3)記的面積分別為;

4,

正確說(shuō)法的個(gè)數(shù)為( )

A.0B.1C.2D.3

【答案】C

【解析】

利用直線與平面所成角以及二面角轉(zhuǎn)化求解判斷選項(xiàng)的正誤;三角形的面積的求法判斷選項(xiàng)的正誤即可.

(1)PA⊥平面ABC,根據(jù)最小角定理可得,,

,故(1)錯(cuò);

(2)如圖,過(guò)AAMBCM,因?yàn)?/span>PA⊥平面ABC,所以APBC,又,所以BC⊥平面APM,所以PMBC,

, 過(guò)M作∠PMA的角平分線交PA于點(diǎn)E,,

∴點(diǎn)E在點(diǎn)Q的下方,,∴則, (2)錯(cuò);

(3)如圖,,,,

,而,

所以,所以,故(3)正確;

(4) 中,,在,在中,,

,

,又是鈍角,所以 ,所以,

,

所以.(4)正確;

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在矩形中,中點(diǎn),將沿折起,使點(diǎn)到點(diǎn)處,且平面平面,如圖2所示.

1)求證:

2)在棱上取點(diǎn),使平面平面,求平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為2的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足,(),將沿直線折到的位置.在翻折過(guò)程中,下列結(jié)論不成立的是(

A.在邊上存在點(diǎn),使得在翻折過(guò)程中,滿足平面

B.存在,使得在翻折過(guò)程中的某個(gè)位置,滿足平面平面

C.,當(dāng)二面角為直二面角時(shí),

D.在翻折過(guò)程中,四棱錐體積的最大值記為的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①:在平行四邊形中,,,將沿對(duì)角線折起,使,連結(jié),得到如圖②所示三棱錐.

1)證明:平面

2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,二面角為直二面角,為線段的中點(diǎn),,,.

1)求證:平面平面;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在某次考試中,從甲乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班成績(jī)的莖葉圖如圖所示,成績(jī)不小于90分的為及格.

1)用樣本估計(jì)總體,請(qǐng)根據(jù)莖葉圖對(duì)甲乙兩個(gè)班級(jí)的成績(jī)進(jìn)行比較.

2)求從甲班10名學(xué)生和乙班10名學(xué)生中各抽取一人,已知有人及格的條件下乙班同學(xué)不及格的概率;

3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關(guān)數(shù)據(jù),為分析其關(guān)系,該店做了五次統(tǒng)計(jì),所得數(shù)據(jù)如下:

日平均氣溫(攝氏度)

31

32

33

34

35

日銷售額(百元)

5

6

7

8

10

由資料可知,關(guān)于的線性回歸方程是,給出下列說(shuō)法:

②日銷售額(百元)與日平均氣溫(攝氏度)成正相關(guān);

③當(dāng)日平均氣溫為攝氏度時(shí),日銷售額一定為百元.

其中正確說(shuō)法的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在改革開放40年成就展上某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)表:

年份

2014

2015

2016

2017

2018

2019

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

2)根據(jù)線性回歸方程預(yù)測(cè)2020年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留到小數(shù)點(diǎn)后兩位)

查看答案和解析>>

同步練習(xí)冊(cè)答案