已知函數(shù).
(1)試判斷函數(shù)F(x)=(x2+1) f (x) – g(x)在[1,+∞)上的單調(diào)性;
(2)當0<a<b時,求證:函數(shù)f (x) 定義在區(qū)間[a,b]上的值域的長度大于(閉區(qū)間[m,n]的長度定義為n –m).
(3)方程f(x)=是否存在實數(shù)根?說明理由。
(1)單調(diào)遞增
(2)略
(3)不存在實數(shù)根
【解析】(1)∵F(x)=(x2+1)lnx –2x+2.
∴F ′(x)= 2xlnx+.
∴當x≥1時,F′(x)≥0且僅當x = 1時F′(x)= 0 ∴F(x)在(1,+∞)上單調(diào)遞增。
(2)∵0<a<b,f (x)在[a,b]上的值域為[lna,lnb][來源:學&科&網(wǎng)Z&X&X&K]
∴要證值域的長度大于,
即證lnb –lna>
只要證ln
∵0<a<b,∴令
則只要證lnx> (x>1)
即證(x2+1)lnx –(2x –2)>0 (※)
由(1)可知F(x)在(1,+∞)上單調(diào)遞增 ∴F(x)>F(1)= 0 所以(※)式成立.
∴f (x)在[a, b]上的值域的長度大于.……9分
(3)∵f (x) = xlnx=
令h (x) = xlnx(x>0).則h ′(x)=lnx+1,
易知,在上單調(diào)遞減,在上單調(diào)遞增
當時,
令,則
易知,在上單調(diào)遞增,在上單調(diào)遞減
當時,
∵∴方程f(x)=不存在實數(shù)根
科目:高中數(shù)學 來源: 題型:
已知函數(shù).
(1)試判斷在上的單調(diào)性;
(2)當時,求證:函數(shù)的值域的長度大于(閉區(qū)間[m,n]的長度定義為n-m).
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年陜西省高三高考模擬考試(八)理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并說明理由;
(2)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年新課標高三上學期單元測試(1)理科數(shù)學卷 題型:解答題
(本題12分)已知函數(shù),.
(1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;
(2)求函數(shù)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com