已知函數(shù)

(1)試判斷函數(shù)的單調(diào)性,并說明理由;

(2)若恒成立,求實(shí)數(shù)的取值范圍.

 

【答案】

(1)遞減

(2) 

【解析】

試題分析:解:(1)    

遞減 ..............4分

2)   記

           7分

再令    

 上遞增。          10分

,從而 故上也單調(diào)遞增

                13分

考點(diǎn):函數(shù)單調(diào)性

點(diǎn)評(píng):主要是考查了函數(shù)單調(diào)性的運(yùn)用,以及函數(shù)單調(diào)性與導(dǎo)數(shù)的符號(hào)的關(guān)系的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)試判斷f(x)的奇偶性;
(2)解關(guān)于x的方程數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)試判斷函數(shù)的單調(diào)性;

(2)設(shè),求上的最大值;

(3)試證明:對(duì),不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)試判斷上的單調(diào)性;

(2)當(dāng)時(shí),求證:函數(shù)的值域的長度大于(閉區(qū)間[m,n]的長度定義為nm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年新課標(biāo)高三上學(xué)期單元測(cè)試(1)理科數(shù)學(xué)卷 題型:解答題

(本題12分)已知函數(shù),.

   (1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;

   (2)求函數(shù)的最大值和最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案