已知雙曲線的方程為-=1,點(diǎn)A、B在雙曲線的右支上,線段AB經(jīng)過(guò)雙曲線的右焦點(diǎn)F2,|AB|=m,F(xiàn)1為另一焦點(diǎn),則△ABF1的周長(zhǎng)為(    )

A.2a+2m             B.4a+2m             C.a+m               D.2a+4m

思路解析:F1是雙曲線的焦點(diǎn),因此可考慮雙曲線的定義.

解:由雙曲線的定義知|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,而直線AB過(guò)F2,∵|AF2|+|BF2|=|AB|,∴△ABF1的周長(zhǎng)為|AF1|+|BF1|+|AB|=|AF1|-|AF2|+|BF1|-BF2|+2|AB|=4a+2m,故選

B.

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,過(guò)左焦點(diǎn)F1作斜率為
3
3
的直線交雙曲線的右支于點(diǎn)P,且y軸平分線段F1P,則雙曲線的離心率是(  )
A、
2
B、
5
+1
C、
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的方程為16x2-9y2=144.
(1)求雙曲線的焦點(diǎn)坐標(biāo)、離心率和準(zhǔn)線方程;
(2)求以雙曲線的中心為頂點(diǎn),左頂點(diǎn)為焦點(diǎn)的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)已知雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為
5
3
c
(c為雙曲線的半焦距長(zhǎng)),則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶山區(qū)二模)已知雙曲線的方程為
x23
-y2=1
,則此雙曲線的焦點(diǎn)到漸近線的距離為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)已知雙曲線的方程為
x2
4
-y2=1
,則其漸近線的方程為
y=±
1
2
x
y=±
1
2
x
,若拋物線y2=2px的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p=
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案