7.函數(shù)f(x)=|x2-4|-a恰有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為a=0或a>4.

分析 畫(huà)出函數(shù)y=|x2-4|,與y=a的圖象,利用函數(shù)的兩個(gè)零點(diǎn),寫(xiě)出結(jié)果即可.

解答 解:函數(shù)g(x)=|x2-4|的圖象如圖所示,
∵函數(shù)f(x)=|x2-4|-a恰有兩個(gè)零點(diǎn),
∴a=0或a>4.
故答案為:a=0或a>4.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,其中熟練掌握函數(shù)零點(diǎn)與方程根之間的對(duì)應(yīng)關(guān)系是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,輸出S的值為( 。
A.45B.55C.66D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=|lnx|,若在區(qū)間$[\frac{1}{3},3]$內(nèi),曲線g(x)=f(x)-ax與x軸有三個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{ln3}{3},\frac{1}{2e})$C.$(0,\frac{1}{e})$D.$(0,\frac{1}{2e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“4<K<9”是“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.不等式$\frac{3x+4}{x-2}$>4的解集是(2,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)x∈R,則“x<-2”是“x2+x≥0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=log2||x|-1|.
(1)作出函數(shù)f(x)的大致圖象;
(2)指出函數(shù)f(x)的奇偶性、單調(diào)區(qū)間及零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C以原點(diǎn)為中心,左焦點(diǎn)F的坐標(biāo)是(-1,0),長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的$\sqrt{2}$倍,直線l與橢圓C交于點(diǎn)A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)對(duì)于動(dòng)直線l,是否存在一個(gè)定點(diǎn),無(wú)論∠OFA如何變化,直線l總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知I={0,1,2,3,4,5,6,7,8},M={1,2,4,5},N={0,3,5,7},則∁I(M∪N)={6,8}.

查看答案和解析>>

同步練習(xí)冊(cè)答案