15.“4<K<9”是“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 求出方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓的k的范圍,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:∵方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓,
∴$\left\{\begin{array}{l}{9-k>0}\\{k-4>0}\\{9-k≠k-4}\end{array}\right.$,解得:4<k<9且k≠$\frac{13}{2}$,
故“4<K<9”是“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓“的必要不充分條件,
故選:B.

點評 本題考查了充分必要條件,考查橢圓的方程,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={5},B={1,2},C={1,3,4},從這三個集合中各取一個元素構(gòu)成空間直角坐標(biāo)系上的坐標(biāo),則確定的不同點的個數(shù)為( 。
A.6B.32C.33D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.平面上兩定點F1(-1,0),F(xiàn)2(1,0),動點P滿足|PF1|+|PF2|=k
(1)求動點P的軌跡;
(2)當(dāng)k=4時,動點P的軌跡為曲線C,已知$M(-\frac{1}{2},0)$,過M的動直線l(斜率存在且不為0)與曲線C交于P,Q兩點,S(2,0),直線l1:x=-3,SP,SQ分別與l1交于A,B兩點.A,B,P,Q坐標(biāo)分別為A(xA,yA),B(xB,yB),P(xP,yP),Q(xQ,yQ),求證:$\frac{{\frac{1}{y_A}+\frac{1}{y_B}}}{{\frac{1}{y_P}+\frac{1}{y_Q}}}$為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知不等式2x+1>m(x2+1).若對于所有的實數(shù)x不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={-2,-1,0,2},B={x|x2=2x},則A∩B={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=|x2-4|-a恰有兩個零點,則實數(shù)a的取值范圍為a=0或a>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若集合M={x|x2-2x<0},N={x||x|>1},則M∩N=(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè){an}是首項為a1,公差為-2的等差數(shù)列,Sn為前n項和,若S1,S2,S4成等比數(shù)列,則a1=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

同步練習(xí)冊答案