【題目】已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若的解集包含,求的取值范圍.
【答案】(1){x|x≤1,或x≥4};(2)[-3,0].
【解析】
試題分析:(1)當(dāng)時(shí),用分段函數(shù)的形式表示出函數(shù)的解析式,并分三種情況對(duì)其進(jìn)行討論,得出相應(yīng)的不等式的解集,最后可得出該不等式的解集即可;(2)首先將問(wèn)題的解集包含轉(zhuǎn)化為.當(dāng)x∈[1,2]時(shí),|x-4|-|x-2|≥|x+a|,進(jìn)而轉(zhuǎn)化為-2-a≤x≤2-a,由集合間的包含關(guān)系可得出證明.
試題解析:(1)當(dāng)a=-3時(shí),
當(dāng)x≤2時(shí),由f(x)≥3得-2x+5≥3,解得x≤1;當(dāng)2<x<3時(shí),f(x)≥3無(wú)解;當(dāng)x≥3時(shí),由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集為{x|x≤1,或x≥4}.
(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.當(dāng)x∈[1,2]時(shí),|x-4|-|x-2|≥|x+a|4-x-(2-x)≥|x+a|-2-a≤x≤2-a.由條件得-2-a≤1且2-a≥2,即-3≤a≤0.故滿足條件的a的取值范圍是[-3,0].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)(-l,3)且與直線x-2y+3=0平行的直線方程是( )
A. x-2y-5=0 B. x-2y+7=0 C. 2x+y-1=0 D. 2x+y-5=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 其生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量 (噸)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若毎噸產(chǎn)品平均出廠價(jià)為萬(wàn)元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】集合M={1,3,a},N={2,a2}.若M∪N={1,2,3,4,16},則a的值為( )
A.0
B.1
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)和分別是上的奇函數(shù)和偶函數(shù),且,其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當(dāng)時(shí),分別求出曲線和切線斜率的最小值;
(Ⅲ)設(shè),證明:當(dāng)時(shí),曲線在曲線和之間,且相互之間沒(méi)有公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求證:函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;
(Ⅱ)當(dāng)時(shí),求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)實(shí)數(shù)a、b、c成等差數(shù)列且它們的和為12,又a+2、b+2、c+5成等比數(shù)列,求出這三個(gè)實(shí)數(shù)a、b、c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,且a2=2b.
(1)求橢圓的方程;
(2)直線l:x﹣y+m=0與橢圓交于A,B兩點(diǎn),是否存在實(shí)數(shù)m,使線段AB的中點(diǎn)在圓x2+y2=5上,若存在,求出m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明中午放學(xué)回家自己煮面條吃,有下面幾道工序:①洗鍋盛水2分鐘;②洗菜6分鐘;③準(zhǔn)備面條及佐料2分鐘;④用鍋把水燒開(kāi)10分鐘;⑤煮面條和菜共3分鐘.以上各道工序,除了④之外,一次只能進(jìn)行一道工序.小明要將面條煮好,最少要用( )
A. 13分鐘 B. 14分鐘
C. 15分鐘 D. 23分鐘
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com