已知兩點(diǎn)A(2,3)、B(4,1),直線l:x+2y-2=0,在直線l上求一點(diǎn)P.
(1)使|PA|+|PB|最;
(2)使|PA|-|PB|最大.

解:(1)可判斷A、B在直線l的同側(cè),設(shè)A點(diǎn)關(guān)于l的對(duì)稱點(diǎn)A1的坐標(biāo)為(x1,y1).
則有+2•-2=0,•(-)=-1.
解得
x1=-,
y1=-
由兩點(diǎn)式求得直線A1B的方程為y=(x-4)+1,直線A1B與l的交點(diǎn)可求得為P(,-).
由平面幾何知識(shí)可知|PA|+|PB|最小.
(2)由兩點(diǎn)式求得直線AB的方程為y-1=-(x-4),即x+y-5=0.
直線AB與l的交點(diǎn)可求得為P(8,-3),它使|PA|-|PB|最大.
分析:先判斷A、B與直線l:x+2y-2=0的位置關(guān)系,即把點(diǎn)的坐標(biāo)代入x+2y-2,看符號(hào)相同在同側(cè),相反異側(cè).
(1)使|PA|+|PB|最小,如果A、B在l的同側(cè),將其中一點(diǎn)對(duì)稱到l的另一側(cè),連線與l的交點(diǎn)即為P;
如果A、B在l的異側(cè),則直接連線求交點(diǎn)P即可.
(2)使|PA|-|PB|最大.如果A、B在l的同側(cè),則直接連線求交點(diǎn)P即可;
如果A、B在l的異側(cè),將其中一點(diǎn)對(duì)稱到l的另一側(cè),連線與l的交點(diǎn)即為P.
點(diǎn)評(píng):本題考查點(diǎn)與直線的位置關(guān)系,直線關(guān)于直線對(duì)稱問題,以及平面幾何知識(shí),是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(2,3)、B(4,1),直線l:x+2y-2=0,在直線l上求一點(diǎn)P.
(1)使|PA|+|PB|最;
(2)使|PA|-|PB|最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(2,3)、B(-4,5),則與共線的單位向量是(    )

A.e=(-6,2)                                        B.e=(-6,2)或(6,-2)

C.e=(,)                    D.e=(,)或(3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A (1,2), B (3,1) 到直線L的距離分別是,則滿足條件的直線L共有          條。                                          (   C   )

(A)1          (B)2          (C)3          (D)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A (1,2), B (3,1) 到直線L的距離分別是,則滿足條件的直線L共有()條。

(A)1       (B)2     (C)3     (D)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(2,3)、B(4,1),直線lx+2y-2=0,在直線l上求一點(diǎn)P.

(1)使|PA|+|PB|最;

(2)使|PA|-|PB|最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案