【題目】已知函數(shù)(為常數(shù),).給你四個(gè)函數(shù):①;②;③;④.
(1)當(dāng)時(shí),求不等式的解集;
(2)求函數(shù)的最小值;
(3)在給你的四個(gè)函數(shù)中,請選擇一個(gè)函數(shù)(不需寫出選擇過程和理由),該函數(shù)記為,滿足條件:存在實(shí)數(shù)a,使得關(guān)于x的不等式的解集為,其中常數(shù)s,,且.對選擇的和任意,不等式恒成立,求實(shí)數(shù)a的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)令,則的解為或,由后者可得的解.
(2)令,則,分類討論后可求,的最小值,該最小值即為原來函數(shù)的最小值.
(3)取,可以證明滿足條件,再利用換元法考慮任意,不等式恒成立可得實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),.
令,因?yàn)?/span>的解為或,
所以(舍)或,故,
所以的解集為.
(2)令,則,
函數(shù)的最小值即為,的最小值.
當(dāng)即時(shí), .
當(dāng)即時(shí),;
當(dāng)即時(shí), .
故.
(3)取,
令,設(shè)的解集為閉區(qū)間,
由得,故的解集為,
取,則,故滿足條件.
當(dāng)時(shí),,故在上恒成立,
故,解得,
所以實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點(diǎn)E、F分別是AB和PC的中點(diǎn).
(1)求證:AB⊥平面PAD;
(2)求證:EF//平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓上一點(diǎn),軸于點(diǎn),軸于點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),點(diǎn)的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)斜率為的直線交曲線于不同的兩點(diǎn)、,是否存在定點(diǎn),使得直線、的斜率之和恒為0.若存在,則求出點(diǎn)的坐標(biāo);若不存在,則請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn).點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線的方程;
(2)求證:;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的方程有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)為線段上一點(diǎn),為線段上一點(diǎn),且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù);
(2)若實(shí)數(shù)t滿足求實(shí)數(shù)t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,定點(diǎn),是圓上的一動點(diǎn),線段的垂直平分線交半徑于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)四邊形的四個(gè)頂點(diǎn)都在曲線上,且對角線、過原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com