分析 由奇函數(shù)性質(zhì)求f(x)的周期,然后利用此周期推導(dǎo)即可.
解答 解:∵f(x+1)與f(x-1)都是奇函數(shù),
∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),
∴f(x)+f(2-x)=0,f(x)+f(-2-x)=0,
故有f(2-x)=f(-2-x),
函數(shù)f(x)是周期T=[2-(-2)]=4的周期函數(shù).
∴f(-x-1+4)=-f(x-1+4),
f(-x+3)=-f(x+3),
即函數(shù)f(x+3)是奇函數(shù).
點評 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義結(jié)合函數(shù)的周期性是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.5s | B. | 3s | C. | 6s | D. | 18s |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com