若實(shí)數(shù)x,y滿足約束條件
x-y≤0
x+y-1≥0
x-2y+2≥0
,則z=2x-y的最大值為( 。
A、-1B、2C、1D、0
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,通過平移即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x-y得y=2x-z,
平移直線y=2x-z,由圖象可知當(dāng)直線y=2x-z經(jīng)過點(diǎn)A時(shí),直線y=2x-z的截距最小,此時(shí)z最大,
x-y=0
x-2y+2=0
,解得
x=2
y=2
,即A(2,2),
此時(shí)z=2x-y=2×2-2=2,
故選:B.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
(a>b>0)的離心率e=
6
3
,短軸長為2.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,1]上隨機(jī)地任取兩個(gè)數(shù)a,b,則滿足a2+b2
1
4
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)系中,正確的個(gè)數(shù)為
 

1
2
∈R;
2
∉Q;
③|-3|∉N*;
④|-
3
|∈Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,4]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)a,b,則使得方程x2+ax+b2=0有實(shí)根的概率是( 。
A、
1
4
B、
1
3
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[0,2]之間隨機(jī)抽取一個(gè)數(shù)x,則x滿足2x-1≥0的概率為( 。
A、
3
4
B、
1
2
C、
1
4
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈R|-1≤x≤1},B={x∈R|x(x-3)≤0},則A∩B等于(  )
A、{x∈R|-1≤x≤3}
B、{x∈R|0≤x≤3}
C、{x∈R|-1≤x≤0}
D、{x∈R|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在[-1,2]上隨機(jī)取一個(gè)實(shí)數(shù),則|x-1|≤1的概率是( 。
A、
2
3
B、
1
3
C、
1
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ln(x+1)
ax+1

(1)當(dāng)a=1,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)若函數(shù)f(x)在(0,1)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)已知x,y,z均為正實(shí)數(shù),且x+y+z=1,求證:
(3x-1)ln(x+1)
x-1
+
(3y-1)ln(y+1)
y-1
+
(3z-1)ln(z+1)
z-1
≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案