【題目】已知關(guān)于的不等式有且僅有兩個(gè)正整數(shù)解(其中e=2.71828… 為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)的取值范圍是( )
A. (,] B. (,] C. [,) D. [,)
【答案】D
【解析】
化簡(jiǎn)不等式可得mex<,根據(jù)兩函數(shù)的單調(diào)性得出正整數(shù)解為1和2,列出不等式組解出即可.
當(dāng)x>0時(shí),由x2﹣mxex﹣mex>0,可得mex<(x>0),
顯然當(dāng)m≤0時(shí),不等式mex<(x>0),在(0,+∞)恒成立,不符合題意;
當(dāng)m>0時(shí),令f(x)=mex,則f(x)在(0,+∞)上單調(diào)遞增,
令g(x)=,則g′(x)==>0,
∴g(x)在(0,+∞)上單調(diào)遞增,
∵f(0)=m>0,g(0)=0,且f(x)<g(x)有兩個(gè)正整數(shù)解,
則∴,即,解得≤m<.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)點(diǎn),且與軸、軸都交于正半軸,當(dāng)直線與坐標(biāo)軸圍成的三角形面積取得最小值時(shí),求:
(1)直線的方程;
(2)直線l關(guān)于直線m:y=2x-1對(duì)稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,圓:.
(Ⅰ)設(shè)直線被圓所截得的弦的中點(diǎn)為,判斷點(diǎn)與圓的位置關(guān)系;
(Ⅱ)設(shè)圓被圓截得的一段圓。ㄔ趫A內(nèi)部,含端點(diǎn))為,若直線:與圓弧只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像與x軸交于和,與y軸交于C點(diǎn),且是等腰三角形.
(1)求的解析式;
(2)在A、B之間的拋物線段上是否存在異于A、B的點(diǎn)D,使與的面積相等?若存在,求D點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形中,點(diǎn)是邊的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且
(1)求證; 平面平面;
(2)若平面和平面的交線為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的有______.
①.
②已知,則.
③函數(shù)的圖象與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
④函數(shù)的遞增區(qū)間為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , ,
⑴ 若有零點(diǎn),求 m 的取值范圍;
⑵ 確定 m 的取值范圍,使得有兩個(gè)相異實(shí)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com