【題目】在棱長(zhǎng)為2的正方體中,,分別為棱的中點(diǎn),為棱上的一點(diǎn),且,設(shè)點(diǎn)的中點(diǎn),則點(diǎn)到平面的距離為( )

A. B. C. D.

【答案】D

【解析】

D為原點(diǎn),DAx軸,DCy軸,DD1z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)M到平面D1EF的距離,N到面的距離是M到該面距離的一半.

解:以D為原點(diǎn),DAx軸,DCy軸,DD1z軸,建立空間直角坐標(biāo)系,

M2,λ,2),D10,0,2),E2,0,1),F22,1),

=(﹣2,0,1),=(02,0),=(0,λ1),

設(shè)平面D1EF的法向量=(x,y,z),

,取x1,得=(1,0,2),

∴點(diǎn)M到平面D1EF的距離為:

dNEM中點(diǎn),所以N到該面的距離為 ,選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),e是自然對(duì)數(shù)的底數(shù),)存在唯一的零點(diǎn),則實(shí)數(shù)a的取值范圍為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使不等式恒成立,則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開(kāi)通“微博”的調(diào)查,開(kāi)通“微博”的為“時(shí)尚族”,否則稱(chēng)為“非時(shí)尚族”.通過(guò)調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時(shí)尚族”人數(shù)分別占本組人數(shù)的、.

(1)求歲與歲年齡段“時(shí)尚族”的人數(shù);

(2)從歲和歲年齡段的“時(shí)尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中兩人作為領(lǐng)隊(duì).求領(lǐng)隊(duì)的兩人年齡都在歲內(nèi)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求直線的普通方程及曲線的直角坐標(biāo)方程;

2)設(shè)直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次田徑比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示。

若將運(yùn)動(dòng)員按成績(jī)由好到差編為135號(hào),再用系統(tǒng)抽樣方法從中抽取5人,則其中成績(jī)?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班共有名學(xué)生,已知以下信息:

①男生共有人;

②女團(tuán)員共有人;

③住校的女生共有人;

④不住校的團(tuán)員共有人;

⑤住校的男團(tuán)員共有人;

⑥男生中非團(tuán)員且不住校的共有人;

⑦女生中非團(tuán)員且不住校的共有人.

根據(jù)以上信息,該班住校生共有______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)如果恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案