考點:基本不等式
專題:計算題,不等式的解法及應(yīng)用
分析:y=x+
=x+2+
-2,利用基本不等式即可求得函數(shù)的最小值,注意等號取到的條件.
解答:
解:∵x>-2,
∴y=x+
=x+2+
-2≥2
-2=0,
當(dāng)且僅當(dāng)x+2=
,即x=-1時取等號,
∴x=-1時,函數(shù)y=x+
取最小值0.
點評:該題考查利用基本不等式求函數(shù)的最值,屬基礎(chǔ)題,注意使用基本不等式的條件:一正、二定、三相等.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
將最小正周期為3π的函數(shù)f(x)=cos(ωx+φ)-sin(ωx+φ)(ω>0,|φ|<
)的圖象向左平移
個單位,得到偶函數(shù)圖象,則滿足題意的φ的一個可能值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=(1-2a)x3+(9a-4)x2+(5-12a)x+4a(a∈R).
(1)當(dāng)a=0時,求函數(shù)在區(qū)間[0,2]上的最大值;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最大值為2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}是公差為-2的等差數(shù)列,a6是a1+2與a3的等比中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,AE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點,已知AC=BC=CD=1,AE=2,∠ACB=90°.
(Ⅰ)證明:DF⊥平面ABE;
(Ⅱ)求二面角A-BD-C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,簡單組合體ABCDPE,其底面ABCD是邊長為2的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)在線段PB上找一點M,使得ME⊥平面PBD;
(2)求平面PBE與平面PAB的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
x
3-x
2(1)求f(x)在R上的極值;
(2)已知a∈R,若g(x)=f(x)+ax,討論g(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在極坐標(biāo)系中,過極點O做直線n與直線m:ρcosθ=2相交于點M,在線段OM上取一點P,使|OM|•|OP|=6.
(1)求點P的軌跡方程;
(2)直線l恒過定點(0,1),l與點P的軌跡交于A、B兩點,當(dāng)|AB|=
時,求直線l在直角坐標(biāo)系下的方程.
查看答案和解析>>