求導數(shù):3a2lnx+b.
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)導數(shù)公式求出即可.
解答: 解:(3a2lnx+b)′=
3a2
x
點評:本題考查了導數(shù)的運算,牢記常見函數(shù)的求導公式是解題的關鍵,本題屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①命題“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
②設回歸直線方程
y
=2-3x,當變量x增加一個單位時,
y
平均增加3個單位
③已知sin(θ-
π
6
)=
1
3
,則cos(
π
3
-2θ)=
7
9

其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂角D1在底面ABCD內的射影恰好為點C.
(1)求證:AD1⊥BC;
(2)若直線DD1與直線AB所成角為
π
3
,求平面ABC1D1與平面ABCD所成角(銳角)的余弦值函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=0.5x2-x+1.5的定義域和值域都是[1,b],求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點B(-1,-3),AB邊上的高線CE所在直線的方程為x-3y-1=0,BC邊上中線AD所在直線的方程為8x+9y-3=0.
(1)求直線AC的方程;
(2)求三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設|
a
|=1,|
b
|=2,且
a
b
夾角為
π
3
,則|2
a
+
b
|=(  )
A、2
B、4
C、12
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中正確的是(  )
①若一個平面內的任何直線都與另一個平面無公共點,則這兩個平面平行;
②過平面外一點有且僅有一個平面和已知平面平行;
③過平面外兩點不能作平面與已知平面平行;
④若一條直線和一個平面平行,經(jīng)過這條直線的任何平面都與已知平面平行.
A、①③B、②④C、①②D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的定義域,值域,單調遞增區(qū)間,最小值,對稱軸方程和對稱中心.
(1)f(x)=2sin(x-
π
3
);
(2)f(x)=-sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)
sin(α-π)cot(α-2π)
cos(α-π)tan(α-2π)

(2)cot2α(tan2α-sin2α).

查看答案和解析>>

同步練習冊答案