18.已知拋物線$y=-\frac{3}{16}(x-1)(x-9)$與x軸交于A,B兩點,對稱軸與拋物線交于點C,與x軸交于點D,⊙C的半徑為2,G為⊙C上一動點,P為AG的中點,則DP的最大值為( 。
A.$\frac{7}{2}$B.$\frac{{\sqrt{41}}}{2}$C.$\frac{{\sqrt{34}}}{2}$D.$2\sqrt{3}$

分析 求出拋物線的頂點坐標(biāo),寫出圓的方程,設(shè)出G的坐標(biāo),推出P的坐標(biāo),利用兩點間距離公式求解最值.

解答 解:拋物線$y=-\frac{3}{16}(x-1)(x-9)$與x軸交于A,B兩點,
可得A(1,0),B(9,0),D(5,0),C(5,3),圓的方程為:(x-5)2+(y-3)2=4,
設(shè)G(5+2cosθ,3+2sinθ).P為AG的中點,
可得P(3+cosθ,$\frac{3}{2}$+sinθ).
DP=$\sqrt{({cosθ-2)}^{2}+(\frac{3}{2}+sinθ)^{2}}$=$\sqrt{5+\frac{9}{4}-4cosθ+3sinθ}$=$\sqrt{5+\frac{9}{4}+5sin(θ-γ)}$,其中tanγ=$\frac{4}{3}$.
$\sqrt{5+\frac{9}{4}+5sin(θ-γ)}$≤$\sqrt{10+\frac{9}{4}}$=$\frac{7}{2}$.
故選:A.

點評 本題考查拋物線的簡單性質(zhì)以及圓的參數(shù)方程與三角函數(shù)的最值的求法,考查分析問題解決問題以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A中元素(x,y)在映射f 下對應(yīng)B中元素(x+y,x-y),則B中元素(4,-2)在A中對應(yīng)的元素為( 。
A.(1,3)B.( 1,6)C.(2,4)D.(2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“?x∈R,lgx=x-2”的否定是?x∈R,lgx≠x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,AB=2,AC=3,∠A的平分線于AB邊上的中線交于點O,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),則x+y的值為$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,(x≥0)}\\{{x}^{2}+mx-1,(x<0)}\end{array}\right.$是偶函數(shù).
(1)求實數(shù)m的值;
(2)作出函數(shù)y=f(x)的圖象,并寫出其單調(diào)區(qū)間;
(3)若函數(shù)y=f(x)-k有4個零點,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=${(\frac{1}{3})^x}$-1,x∈[-1,1]的值域是$[-\frac{2}{3},2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以原點O為圓心作一個單位圓,角α和角β的終邊與單位圓分別交于A、B兩點,且|$\overrightarrow{AB}$|=$\frac{{2\sqrt{5}}}{5}$.若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,sinβ=-$\frac{5}{13}$.
(1)求△AOB的面積;
(2)求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若數(shù)列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}$an
(Ⅰ)證明:{$\frac{{a}_{n}}{n}$}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)若{an}的前n項和為Sn,求證Sn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={1,2},B={x|x2+ax+b=0},若A=B,則a+b=-1.

查看答案和解析>>

同步練習(xí)冊答案