【題目】已知函數(shù),(為常數(shù))
(1)若
①求函數(shù)在區(qū)間上的最大值及最小值。
②若過點可作函數(shù)的三條不同的切線,求實數(shù)的取值范圍。
(2)當時,不等式恒成立,求的取值范圍。
【答案】(1)①;②;(2)。
【解析】
(1)①利用導數(shù)求出函數(shù)的最值;②設曲線切線的切點坐標為,則,故切線方程為,
因為切線過點,所以有三個不同的解;
(2)不等式等價于,令,明確函數(shù)的最值,對a分類討論,即可得到結果。
(1)因為,所以,從而。
①令,解得或,列表:
所以,,。
②設曲線切線的切點坐標為,則,
故切線方程為,
因為切線過點,所以,
即,
令,則,
所以,當時,,此時單調(diào)遞增,
當時,,此時單調(diào)遞減,
所以,,
要使過點可以作函數(shù)的三條切線,則需,解得。
(2)當時,不等式等價于,
令,則,
所以,當時,,此時函數(shù)單調(diào)遞減;
當時,,此時函數(shù)單調(diào)遞增,故。
若,則,此時;
若,則,從而;
綜上可得。
科目:高中數(shù)學 來源: 題型:
【題目】若點P是直線2x+y+10=0上的動點,直線PA、PB分別與圓x2+y2=4相切于A、B兩點,則四邊形PAOB(O為坐標原點)面積的最小值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結構,這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結構)嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱,從外表上看,六根等長的正四棱柱分成三組,經(jīng)榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進一個球形容器內(nèi),則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2x的焦點為F,過焦點F的直線交拋物線于A,B兩點,過A,B作準線的垂線交準線與P,Q兩點.R是PQ的中點.
(1)證明:以PQ為直徑的圓恒過定點F.
(2)證明:AR∥FQ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有限集S中的元素個數(shù)記作,設A、B是有限集合,給出下列命題:
(1)的充分不必要條件是;
(2)的必要不充分條件是;
(3)的充要條件是
其中假命題是(寫題號)________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請先求出頻率分布表中位置的相應數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;
(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點P.
(1)若直線l平行于直線l1:4x-y+1=0,求l的方程;
(2)若直線l垂直于直線l1:4x-y+1=0,求l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com