設(shè)函數(shù),其中
(I)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(II)求函數(shù)的極值點(diǎn);
(III)證明對(duì)任意的正整數(shù)n ,不等式都成立.


本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于等于零,(2)是不等式,需要關(guān)注兩點(diǎn),一是構(gòu)造函數(shù)并運(yùn)用函數(shù)的單調(diào)性證明不等式,二是根據(jù)解題要求選擇是否分離變量.
(1)先求解定義域,求解導(dǎo)數(shù)得到結(jié)論。
(2)對(duì)于參數(shù)b進(jìn)行分類(lèi)討論得到結(jié)論。
(3)令b=-1,然后構(gòu)造函數(shù)求證不等式。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) ,其中R.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析
式;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)求函數(shù)f(x)=- 2的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù)).
①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
②設(shè)的兩個(gè)極值點(diǎn),的一個(gè)零點(diǎn).證明:存在實(shí)數(shù),使得按某種順序排列后構(gòu)成等差數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

求函數(shù)的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
已知函數(shù) (為非零常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(1)判斷的單調(diào)性;
(2)若, 求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若的極值點(diǎn),求上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在區(qū)間內(nèi)既有極大值,又有極小值,
則實(shí)數(shù)的取值范圍是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等于(   )
A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案