【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3an , 求數(shù)列{ }的前n項和Tn

【答案】
(1)解:在3an=2Sn+3中,取n=1得a1=3,

且3an+1=2Sn+1+3,

兩式相減得3an+1﹣3an=2an+1,

∴an+1=3an,

又a1≠0,

∴數(shù)列{an}是以3為公比的等比數(shù)列,

∴an=33n1=3n


(2)解:bn=log3an=n,

= ,

∴數(shù)列{ }的前n項和Tn=(1 )+( )+( )+…+( )=1﹣


【解析】(1)根據(jù)數(shù)列的遞推公式即可求出數(shù)列{an}為等比數(shù)列,再由等比數(shù)列的通項公式得答案;(2)把數(shù)列{an}的通項公式代入bn=log3an , 求得bn , 再由裂項相消法求數(shù)列{ }的前n項和Tn
【考點精析】利用數(shù)列的前n項和和數(shù)列的通項公式對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】英格蘭足球超級聯(lián)賽,簡稱英超,是英國足球最高等級的職業(yè)足球聯(lián)賽,也是世界最高水平的職業(yè)足球聯(lián)賽之一,目前英超參賽球隊有20個,在2014-2015賽季結(jié)束后將各隊積分分成6段,并繪制出了如圖所示的頻率分布直方圖(圖中各分組區(qū)間包括左端點,不包括右端點,如第一組表示積分在[30,40)內(nèi)).根據(jù)圖中現(xiàn)有信息,解答下面問題:

(Ⅰ)求積分在[40,50)內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)從積分在[40,60)中的球隊中任選取2個球隊,求選取的2個球隊的積分在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)= .g(x)= ,
(1)求當x<0時,函數(shù)f(x)的解析式,并在給定直角坐標系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點)

(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四面體ABCD的頂點都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則(
A.MN的長度是定值
B.MN長度的最小值是2
C.圓M面積的最小值是2π
D.圓M、N的面積和是定值8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團隊根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達到18%以上,則認定霧炮除塵有效.

(1)根據(jù)以上數(shù)據(jù)估計霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個區(qū)域,每個區(qū)域投放3臺霧炮進行除塵(霧炮之間工作互不影響),若在一個區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進行治理,求后期投入費用的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f( ),當x∈[1,4]時,f(x)=lnx,若在區(qū)間x∈[ ,4]內(nèi),函數(shù)g(x)=f(x)﹣ax與x軸有三個不同的交點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在區(qū)間[﹣2,t](t>﹣2)上的函數(shù)f(x)=(x2﹣3x+3)ex(其中e為自然對數(shù)的底).
(1)當t>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)m=f(﹣2),n=f(t),求證:m<n;
(3)設(shè)g(x)=f(x)+(x﹣2)ex , 當x>1時,試判斷方程g(x)=x的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當a=﹣ 時,求f(x)在點P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當﹣ <a<﹣ 時,f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

同步練習冊答案