已知函數(shù)f(x)=2x3+ax與g(x)=bx2+c的圖象都過點(diǎn)P(2,0),且在點(diǎn)P處有相同的切線.
( I)求實(shí)數(shù)a,b,c的值;
( II)設(shè)函數(shù)F(x)=f(x)+g(x),求函數(shù)F(x)的單調(diào)區(qū)間.
分析:(I)欲求實(shí)數(shù)a,b,c的值,只須求出切線斜率的值,故先利用導(dǎo)數(shù)求出在x=2處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.最后利用斜率相等及都過點(diǎn)P列出等量關(guān)系,從而問題解決.
(II)欲求函數(shù)F(x)=f(x)+g(x),求函數(shù)F(x)的單調(diào)區(qū)間,利用導(dǎo)數(shù)來解決.先求出F(x)的導(dǎo)數(shù),根據(jù)F′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,F(xiàn)′(x)<0求得的區(qū)間是單調(diào)減區(qū)間即可.
解答:解:( I)由題設(shè)知:
??實(shí)數(shù)a,b,c的值分別為:-8,4,-16.
( II)F(x)=2x
3+4x
2-8x-16F′(x)=6x
2+8x-8
令F′(x)=6x
2+8x-8>0得
x>或x<-2
令F′(x)=6x
2+8x-8<0得
-2<x<所以F(x)遞增區(qū)間為
(-∞,-2),(,+∞)遞減區(qū)間為
(-2,).
點(diǎn)評(píng):本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.