借助計(jì)算器或計(jì)算機(jī),用二分法求方程在區(qū)間內(nèi)的近似解(精確到).
原方程即,令
可算得,于是
所以,這個(gè)方程在區(qū)間內(nèi)有一個(gè)解.
下面用二分法求方程在區(qū)間內(nèi)的近似解.
取區(qū)間的中點(diǎn),用計(jì)算器可算得
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131158112503.gif" style="vertical-align:middle;" />,所以
同理可得,
由于,
此時(shí)區(qū)間的兩個(gè)端點(diǎn)精確到的近似值都是
所以原方程精確到的近似解為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和滿足:(a為常數(shù),且). (Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè),若數(shù)列為等比數(shù)列,求a的值;
(Ⅲ)在滿足條件(Ⅱ)的情形下,設(shè),數(shù)列的前n項(xiàng)和為Tn .
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)。
(1)證明:;
(2)求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,,3].
(1)求f(x);
  (2)求;
  (3)在f(x)與的公共定義域上,解不等式f(x)>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系,有經(jīng)驗(yàn)公式:,今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,則對(duì)甲、乙兩種商品的資金投入分別是多少?能獲得最大的利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某化工廠生產(chǎn)一種溶液,按市場(chǎng)要求,雜質(zhì)含量不超過,若初時(shí)含雜質(zhì),每過濾一次可使雜質(zhì)含量減少,問至少應(yīng)過濾幾次才能使產(chǎn)品達(dá)到市場(chǎng)要求?(已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題




甲、乙、丙三人在該市乘坐出租汽車收費(fèi)情況如下表所示:
序號(hào)
里程(km)
收費(fèi)額(元)

3
8

5
11

8
20
試將該市出租汽車收費(fèi)(元)表示為里程(km)的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

大西洋鮭魚每年都要逆流而上2000m,游回產(chǎn)地產(chǎn)卵.研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù),單位是m/s,其中表示魚的耗氧量的單位數(shù).
(1)  當(dāng)一條魚的耗氧量是2700個(gè)單位時(shí),它的游速是多少?
(2)  計(jì)算一條魚靜止時(shí)耗氧量的單位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(
(1)求的定義域;
(2)若為奇函數(shù),求的值;
(3)考察在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案