某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設(shè)休閑區(qū)的長和寬的比,求公園ABCD所占面積S關(guān)于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬應(yīng)如何設(shè)計?
(1)   (2) 要使公園所占面積最小,休閑區(qū)應(yīng)設(shè)計為長100米,寬40米

試題分析:(1)設(shè)休閑區(qū)的寬為米,則其長為米,根據(jù)休閑區(qū)的面積為4000平方米,
表示,然后根據(jù)矩形的面積公式求出公園所占面積關(guān)于的函數(shù)即可;
(2)利用均值不等式求出最小值,利用等號成立的條件,從而求出長和寬.
試題解析:(1)解:設(shè)休閑區(qū)的寬為米,則其長為米.
,得:,則

.
(2)
當(dāng)且僅當(dāng),即時取等號,此時,;
所以要使公園所占面積最小,休閑區(qū)應(yīng)設(shè)計為長100米,寬40米.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市環(huán)保部門對市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究,發(fā)現(xiàn)一天中環(huán)境污染指數(shù)與時刻(時)的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且,用每天的最大值作為當(dāng)天的污染指數(shù),記作.
(1)令,求的取值范圍;
(2)按規(guī)定,每天的污染指數(shù)不得超過2,問目前市中心的污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果n件產(chǎn)品中任取一件樣品是次品的概率為,則認(rèn)為這批產(chǎn)品中有件次品。某企業(yè)的統(tǒng)計資料顯示,產(chǎn)品中發(fā)生次品的概率p與日產(chǎn)量n滿足,有已知每生產(chǎn)一件正品可贏利a元,如果生產(chǎn)一件次品,非但不能贏利,還將損失元().
(1)求該企業(yè)日贏利額的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業(yè)日產(chǎn)量的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列四個命題:
①?x∈R,x2+2>0
②?x∈N,x4≥1
③?x0∈Z,x03<1
④?x0∈Q,x02=3
其中是真命題是(  )
A.①②B.④①C.③④D.③①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)滿足2+,對x≠0恒成立,在數(shù)列{an}、{bn}中,a1=1,b1=1,對任意x∈N+
(1)求函數(shù)解析式;
(2)求數(shù)列{an}、{bn}的通項公式;
(3)若對任意實數(shù),總存在自然數(shù)k,當(dāng)n≥k時,恒成立,求k的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)=的最小值為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點,的直線與軸的交點為,則稱關(guān)于函數(shù)的平均數(shù),記為,例如,當(dāng)時,可得,即的算術(shù)平均數(shù).
當(dāng)時,的幾何平均數(shù);
當(dāng)時,的調(diào)和平均數(shù);
(以上兩空各只需寫出一個符合要求的函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知奇函數(shù)當(dāng)時,,則當(dāng)時,的表達(dá)式是(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則=___________________.

查看答案和解析>>

同步練習(xí)冊答案