【題目】如圖,在四棱錐中,底面ABCD為正方形,側(cè)棱底面ABCD,且,E,FH分別是線段PA,PDAB的中點.

(1)求證:平面EFH;

(2)求證:平面AHF;

(3)求二面角的大小.

【答案】1)、(2)見解析;(3

【解析】

試題分別以所在直線為軸,建立空間直角坐標系,()由,可得//平面;()先證明,,進一步可得平面;()先確定平面的法向量為平面的法向量為再由得二面角的大小為

試題解析:

解:建立如圖所示的空間直角坐標系,

,

,,

)證明:,

平面,且平面

//平面---------------------------5

)解:,,

,

,

平面

)設(shè)平面的法向量為,

因為,,

又因為平面的法向量為

所以

所以二面角的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是( )

A. ,則的充分條件是

B. ,則的充要條件是

C. 命題的否定是

D. 是等比數(shù)列,則為單調(diào)遞減數(shù)列的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面

)求證: 平面

)若二面角為直二面角,

i)求直線與平面所成角的大。

ii)棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)

①當平面ABE∥平面CDF時,AC∥平面BFDE

②當平面ABE∥平面CDF時,AE∥CD

③當A、C重合于點P時,PG⊥PD

④當A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設(shè)所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當時,怎樣設(shè)計能使總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求定義域,并判斷函數(shù)fx)的奇偶性;

2)若f1+f2=0,證明函數(shù)fx)在(0,+∞)上的單調(diào)性,并求函數(shù)fx)在區(qū)間[1,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2+bx+c,其中b,cR

1)當fx)的圖象關(guān)于直線x=1對稱時,b=______;

2)如果fx)在區(qū)間[-1,1]不是單調(diào)函數(shù),證明:對任意xR,都有fx)>c-1;

3)如果fx)在區(qū)間(0,1)上有兩個不同的零點.求c2+1+bc的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗公式計算所得弧田面積()平方米

C. 按照弓形的面積計算實際面積為()平方米

D. 按照經(jīng)驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

同步練習(xí)冊答案