已知集合A={x|log2(8-2x)≤2},B={x|
x-5
x+1
<0}求:
(1)(∁RA)∪B;
(2)(∁RA)∪(∁RB).
考點:交、并、補集的混合運算
專題:集合
分析:首先根據(jù)分式函數(shù)和對數(shù)函數(shù)的特點確定出A和B,然后根據(jù)交集、并集、補集的定義得出答案即可.
解答: 解:∵log2(8-2x)≤2,∴0<8-2x≤4,
解得2≤x<3,∴A={x|2≤x<3}
x-5
x+1
<0

∴-1<x<5
故B={x|-1<x<5}
∴∁RA={x|x≥3或x<2}
RB={x|x|x≥5或x≤-1}
∴(∁RA)∪(∁RB)={x|x≥3或x<2}.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2
e
,g(x)=2alnx(e為自然對數(shù)的底數(shù))
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,若F(x)有最值,請求出最值;
(2)是否存在正常數(shù)a,使f(x)與g(x)的圖象有且只有一個公共點,且在該公共點處有共同的切線?若存在,求出a的值,以及公共點坐標和公切線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高二理科開設(shè)語文、數(shù)學、外語、物理、化學、生物和體育七門課程,根據(jù)下列條件,課表分別有多少種不同排法?
(1)某天開設(shè)七門不同課程,其中體育課不排在第一、七節(jié).
(2)某天開設(shè)四門不同課程,其中體育課不排在第一、四節(jié).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓中心為坐標原點,焦點在x軸上,長半軸長與短半軸長之和為1+
5
,離心率為
2
5
5
.   
(Ⅰ)求橢圓的方程;
(Ⅱ)若C(l,0),過B(-1,0)作直線l交橢圓于M,N兩點,且
CM
CN
=2,求△MNC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
8x2
81
+
y2
36
=1
上一點M的縱坐標為2.
(1)求M的橫坐標;
(2)求過M且與
x2
9
+
y2
4
=1
共焦點的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=5sin(5x+
π
6
)-1

(1)寫出函數(shù)的振幅、周期、初相;
(2)求函數(shù)的最大值和最小值并寫出當函數(shù)取得最大值和最小值時x的相應取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若 0<α<
π
2
,-
π
2
<β<0,cos(α+
π
4
)=
1
3
,cos(
π
4
-
β
2
)=
3
3
,求cos(2α+β)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=
a
,
OB
=
b
,且|
a
|=|
b
|=4,∠AOB=60°,
(1)求|
a
+
b
|,|
a
-
b
|;
(2)求
a
+
b
a
的夾角及
a
-
b
a
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=xm2-2m-3(m∈Z)在(0,+∞)是單調(diào)減函數(shù),且為偶函數(shù).
(1)求f(x)的解析式;
(2)討論F(x)=af(x)+(a-2)x5•f(x)的奇偶性,并說明理由.

查看答案和解析>>

同步練習冊答案