【題目】已知數(shù)列,若對(duì)于任意數(shù)列滿足,則稱(chēng)數(shù)列為“數(shù)列”.
(Ⅰ)已知數(shù)列:,,是“數(shù)列”,求實(shí)數(shù)的取值范圍.
(Ⅱ)是否存在首項(xiàng)為的等差數(shù)列為“數(shù)列”,且前項(xiàng)和滿足,若存在,求出的通項(xiàng)公式,若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若數(shù)列,試判斷數(shù)列是否“數(shù)列”,并且說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ)不存在;(Ⅲ)當(dāng)時(shí),數(shù)列為“數(shù)列”,當(dāng)時(shí),數(shù)列不是“數(shù)列”.
【解析】
(Ⅰ)利用“K數(shù)列”定義得到即得m的取值范圍. (Ⅱ)假設(shè)存在等差數(shù)列符合要求,設(shè)公差為,則,找到矛盾,得到不存在這樣的數(shù)列. (Ⅲ)由各項(xiàng)均為正整數(shù)的等比數(shù)列是“數(shù)列”得到,再由數(shù)列不是“數(shù)列”得到即得,所以,或,.再分別判斷數(shù)列是否“數(shù)列”.
(I)根據(jù)題意得:,
∴,
∴,
故實(shí)數(shù)的取值范圍是.
(II)假設(shè)存在等差數(shù)列符合要求,設(shè)公差為,則,由,得,
根據(jù)題意得對(duì)均成立,
即,
①當(dāng)時(shí),.
②當(dāng)時(shí),,
因?yàn)?/span>,
所以,與矛盾,
故這樣的的等差數(shù)列不存在.
(III)設(shè)數(shù)列的公比為,則,
因?yàn)?/span>的每一項(xiàng)均為正整數(shù),且,
所以且,
因?yàn)?/span>,
所以在中,“”為最小項(xiàng),
同理,在中,“”為最小項(xiàng),
由為“數(shù)列”,只需,
即:,
又因?yàn)?/span>不是“數(shù)列”且“”為最小項(xiàng),
所以,即:,
由數(shù)列的每一項(xiàng)均為正整數(shù),可得,
所以,或,.
①當(dāng),時(shí),,則,
令,
又,
所以為遞增數(shù)列,即:,
所以,
因?yàn)?/span>,所以對(duì)任意的,都有,
即數(shù)列為“數(shù)列”.
②當(dāng),時(shí),,則,
因?yàn)?/span>,
所數(shù)數(shù)列不是“數(shù)列”,
綜上所述,當(dāng)時(shí),數(shù)列為“數(shù)列”,
當(dāng)時(shí),數(shù)列不是“數(shù)列”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的( )
A.充分但不必要條件
B.必要但不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為.
(Ⅰ)求常數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)科院的專(zhuān)家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列 ,,,具有性質(zhì)對(duì)任意,, 與兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個(gè)命題:
①數(shù)列,,具有性質(zhì); ②數(shù)列,,,具有性質(zhì);
③若數(shù)列具有性質(zhì),則;④若數(shù)列,,具有性質(zhì),則.其中真命題有( )
A. ①③④ B. ②③④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)員工500人參加“學(xué)雷鋒”活動(dòng),按年齡共分六組,得頻率分布直方圖如下:
(1)現(xiàn)在要從年齡較小的第1、2、3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的各抽取多少人?
(2)在第(1)問(wèn)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)活動(dòng),求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com