從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球(0<m≤n,m,n∈N),共有
C
m
n+1
種取法.在這
C
m
n+1
種取法中,可以分成兩類:一類是取出的m個(gè)球全部為白球,共有C
 
0
1
•C
 
m
n
+C
 
1
1
•C
 
m-1
n
=C
 
0
1
•C
 
m
n+1
,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.試根據(jù)上述思想化簡(jiǎn)下列式子:C
 
m
n
+C
 
1
k
•C
 
m-1
n
+C
 
2
k
•C
 
m-2
n
+…+C
 
k
k
•C
 
m-k
n
=
 
(1≤k<m≤n,k,m,n∈N).
考點(diǎn):組合及組合數(shù)公式
專題:排列組合
分析:從裝有n+1個(gè)球(其中n個(gè)白球,1個(gè)黑球)的口袋中取出m個(gè)球(0<m≤n,m,n∈N),共有Cn+1m種取法.在這Cn+1m種取法中,可以分成兩類:一類是取出的m個(gè)球全部為白球,另一類是,取出1個(gè)黑球,m-1個(gè)白球,則Cnm+Cnm-1=Cn+1m根據(jù)上述思想,在式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,從第一項(xiàng)到最后一項(xiàng)分別表示:從裝有n個(gè)白球,k個(gè)黑球的袋子里,取出m個(gè)球的所有情況取法總數(shù)的和,故答案應(yīng)為:從從裝有n+k球中取出m個(gè)球的不同取法數(shù),根據(jù)排列組合公式,易得答案.
解答: 解:在Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,
從第一項(xiàng)到最后一項(xiàng)分別表示:
從裝有n個(gè)白球,k個(gè)黑球的袋子里,
取出m個(gè)球的所有情況取法總數(shù)的和,
故答案應(yīng)為:從從裝有n+k球中取出m個(gè)球的不同取法數(shù)Cn+km
故答案為:Cn+km
點(diǎn)評(píng):本題考查了推理和排列組合,處理本題的關(guān)鍵是熟練掌握排列組合公式,明白每一項(xiàng)所表示的含義,再結(jié)合已知條件進(jìn)行分析,最后給出正確的答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一張畫(huà)有直角坐標(biāo)系的紙片中,作以點(diǎn)M(-1,0)為圓心,半徑為2
2
的圓,折疊紙片使圓周上的某一個(gè)點(diǎn)P恰好與定點(diǎn)N(1,0)重合,連接PM與折痕交于點(diǎn)Q,反復(fù)這樣折疊得到動(dòng)點(diǎn)Q的集合.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡E的方程;
(Ⅱ)過(guò)直線x=2上的點(diǎn)T向圓O:x2+y2=2作兩條切線,切點(diǎn)分別為A,B,若直線AB與(Ⅰ)中的軌跡E相交于C,D兩點(diǎn),求
|AB|
|CD|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-3x+2與函數(shù)y=2x-3在區(qū)間[a,b]上非常接近,則該區(qū)間可以是
 
.(寫(xiě)出一個(gè)符合條件的區(qū)間即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定積分
a
0
|x-1|dx=
2
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρsin(θ+
π
3
)=
1
2
與曲線
x=
1
2
(t+
1
t
)
y=t-
1
t
(t為參數(shù))相交于A,B兩點(diǎn),若M為線段AB的中點(diǎn),則直線OM的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以(3,-4)為圓心,且與圓x2+y2=64內(nèi)切的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),a2=8,且2a4,a3,4a5成等差數(shù)列,則{an}的前5項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足(z-2)i=1+i(i是虛數(shù)單位),則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為1的正方體,它的內(nèi)切球的半徑為R1,與正方體各棱都相切的球的半徑為R2,正方體的外接球的半徑為R3,則R1,R2,R3依次為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案