分析:(Ⅰ)依題意知,{a
n}是以3為首項,公差為2的等差數(shù)列,從而可求得數(shù)列{a
n}的通項公式;當(dāng)n≥2時,b
n=S
n-S
n-1=2n+1,對b
1=4不成立,于是可求數(shù)列{b
n}的通項公式;
(Ⅱ)由(Ⅰ)知當(dāng)n=1時,T
1=
=
,當(dāng)n≥2時,利用裂項法可求得
=
(
-
),從而可求T
n.
解答:解:(Ⅰ)∵對任意正整數(shù)n滿足a
n+1-a
n=2,
∴{a
n}是公差為2的等差數(shù)列,又a
1=3,
∴a
n=2n+1;
當(dāng)n=1時,b
1=S
1=4;
當(dāng)n≥2時,
b
n=S
n-S
n-1=(n
2+2n+1)-[(n-1)
2+2(n-1)+1]=2n+1,
對b
1=4不成立.
∴數(shù)列{b
n}的通項公式:b
n=
.
(Ⅱ)由(Ⅰ)知當(dāng)n=1時,T
1=
=
,
當(dāng)n≥2時,
=
=
(
-
),
∴T
n=
+
[(
-
)+(
-
)+…+(
-
)]
=
+
(
-
)
=
+
,
當(dāng)n=1時仍成立.
∴T
n=
+
對任意正整數(shù)n成立.
點(diǎn)評:本題考查數(shù)列的求和,著重考查等差數(shù)列與遞推關(guān)系的應(yīng)用,突出考查裂項法求和,屬于中檔題.