12.已知雙曲線C的方程是$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.
(1)求雙曲線C的焦點F1,F(xiàn)2的坐標(biāo);
(2)如果雙曲線C上一點P與焦點F1的距離等8,求點P與焦點F2的距離.

分析 (1)由題意,a=4,b=2$\sqrt{5}$,c=6,即可求雙曲線C的焦點F1,F(xiàn)2的坐標(biāo);
(2)根據(jù)雙曲線的定義,雙曲線上的點到兩焦點的距離差等于2a,由原題意得,||PF2|-|PF1||=2a=8,進(jìn)而求得|PF2|=16.

解答 解:(1)由題意,a=4,b=2$\sqrt{5}$,c=6,
∴雙曲線C的焦點F1(0,6),F(xiàn)2(0,-6);
(2)雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1中,a=4,故||PF2|-|PF1||=2a=8,
而|PF1|=8,故|PF2|=16.

點評 本題考查了雙曲線的定義,考查雙曲線的方程與性質(zhì),屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足:Sn=1-an(n∈N+),其中Sn為數(shù)列{an}的前n項和.
(Ⅰ)證明:數(shù)列{an}是等比數(shù)列;
(Ⅱ)假設(shè)已知an=($\frac{1}{2}$)n,n∈N+,若數(shù)列{bn}滿足:bn=$\frac{n}{{a}_{n}}$(n∈N+),試求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.軸截面為正方形的圓柱叫做等邊圓柱,已知某等邊圓柱的軸截面面積為16cm2,求其底面周長和高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.寫出與下列各角終邊相同的角的集合,并判斷它們分別為第幾象限的角.
(1)65°;
(2)120°;
(3)-125°;
(4)300°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知F1,F(xiàn)2分別是雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點,A是曲線在第一象限內(nèi)的點,若|AF2|=2,且∠F1AF2=45°,延長AF2交雙曲線右支于點B,則|BF2|=2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線y=3x-1是曲線y=ax3的一條切線,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=2${\;}^{-{x}^{2}}$+3,(x<0)的反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知傾斜角為$\frac{2π}{3}$的直線l過拋物線y=$\frac{1}{4}$x2的焦點,則直線l被圓x2+y2+4y-5=0截得的弦長為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知cosxcos(x+y)+sinxsin(x+y)=-$\frac{3}{5}$,y是第二象限角,則tan2y=$\frac{24}{7}$.

查看答案和解析>>

同步練習(xí)冊答案