設(shè)直線l過線C的一個焦點,且與C的一條對稱軸垂直,lC交于A,B兩點,C的實軸長的2倍,則C的離心率為_________.

解析試題分析:設(shè)雙曲線C:,焦點F(-c,0),對稱軸y=0,由題設(shè)知,y=±,∴=4a,b2=2a2,即c2-a2=2a2,所以c2=3a2,∴e==
考點:本題考查了雙曲線離心率的求法
點評:本題中弦AB為雙曲線的通徑,其長度為定值,同學(xué)們在解答客觀題時可靈活運用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)中心在原點的雙曲線與橢圓+y2=1有公共的焦點,且它們的離心率互為倒數(shù),則該雙曲線的方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

橢圓(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知橢圓C1的中心在原點、焦點在x軸上,拋物線C2的頂點在原點、焦點在x軸上。小明從曲線C1,C2上各取若干個點(每條曲線上至少取兩個點),并記錄其坐標(biāo)(x,y)。由于記錄失誤,使得其中恰好有一個點既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:

X
 
-2
 
-
 
0
 
2
 
2
 
3
 
Y
 
2
 
0
 

 
-2
 

 
-2
 
據(jù)此,可推斷橢圓C1的方程為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)橢圓的四個頂點A、B、C、D, 若菱形ABCD的內(nèi)切圓恰好經(jīng)過橢圓的焦點, 則橢圓的離心率為         __  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,在平面斜坐標(biāo)系xOy中,,平面上任意一點P關(guān)于斜坐標(biāo)系的斜坐標(biāo)這樣定義:若(其中,分別是x軸,y軸正方向的單位向量),則P點的斜坐標(biāo)為(x,y),向量的斜坐標(biāo)為(x,y).給出以下結(jié)論:

①若,P(2,-1),則;
②若,,則
③若(x,y),,則;
④若,,則;
⑤若,以O(shè)為圓心,1為半徑的圓的斜坐標(biāo)方程為
其中所有正確的結(jié)論的序號是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標(biāo)系中,橢圓的中心為原點,焦點軸上,離心率為。過的直線 交橢圓兩點,且的周長為16,那么的方程為          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,過拋物線的焦點F的直線依次交拋物線及其準(zhǔn)線于點A、B、C,若|BC |=2|BF|,且|AF|=3,則拋物線的方程是     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)AB是橢圓的長軸,點C在上,且,若AB=4,,則的兩個焦點之間的距離為________

查看答案和解析>>

同步練習(xí)冊答案