【題目】已知,,其中,則下列判斷正確的是__________.(寫出所有正確結(jié)論的序號)

關(guān)于點成中心對稱;

上單調(diào)遞增;

③存在,使;

④若有零點,則;

的解集可能為.

【答案】①③⑤

【解析】

對于①,根據(jù)函數(shù)為奇函數(shù)并結(jié)合函數(shù)圖象的平移可得正確.對于②,分析可得當(dāng)時,函數(shù)上單調(diào)遞減,故不正確.對于③,由,可得,從而得

,可得結(jié)果成立.對于④,根據(jù)③中的函數(shù)的值域可得時方程也有解.對于⑤,分析可得當(dāng)時滿足條件,由此可得⑤正確.

對于①,令,則該函數(shù)的定義域為,且函數(shù)為奇函數(shù),故其圖象關(guān)于原點對稱.又函數(shù)的圖象是由的圖象向上或向下平移個單位而得到的,所以函數(shù)圖象的對稱中心為,故①正確.

對于②,當(dāng)時,,若,則函數(shù)上單調(diào)遞減,所以函數(shù)單調(diào)遞增;函數(shù)上單調(diào)遞增,所以函數(shù)單調(diào)遞減.故②不正確.

對于③,令,則當(dāng)時,,

所以,

,則成立.故③正確.

對于④,若有零點,則,得,從而得,

,結(jié)合③可得當(dāng)有零點時,只需即可,而不一定為零.故④不正確.

對于⑤,由,得.取,則,整理得.當(dāng)時,方程的兩根為.又函數(shù)為奇函數(shù),故方程的解集為.故⑤正確.

綜上可得①③⑤正確.

故答案為:①③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行節(jié)假日高速公路免費政策某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間9:40~10:00記作10:00~10:20記作,10:20~10:40記作.例如:1004分,記作時刻64.

1)估計這600輛車在9:20~10:40時間段內(nèi)通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)為了對數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;

3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱中,平面,,,,點中點.

(Ⅰ)求證:平面平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給圖中A,B,CD,E,F六個區(qū)域進(jìn)行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為,準(zhǔn)線為,若為拋物線上第一象限的一動點,過的垂線交準(zhǔn)線于點,交拋物線于兩點.

(Ⅰ)求證:直線與拋物線相切;

(Ⅱ)若點滿足,求此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD-A1B1C1D1中,AB=BC,E,F分別是AB1,BC1的中點.有下列結(jié)論:

EFBB1;

EF∥平面A1B1C1D1;

EFC1D所成角為45°

EF⊥平面BCC1B1

其中不成立的是( 。

A.②③

B.①④

C.③④

D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大報告指出,要以創(chuàng)新理念提升農(nóng)業(yè)發(fā)展新動力,引領(lǐng)經(jīng)濟發(fā)展走向更高形態(tài).為進(jìn)一步推進(jìn)農(nóng)村經(jīng)濟結(jié)構(gòu)調(diào)整,某村舉辦水果觀光采摘節(jié),并推出配套鄉(xiāng)村游項目現(xiàn)統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖:

(Ⅰ)若將購買金額不低于元的游客稱為“水果達(dá)人”,現(xiàn)用分層抽樣的方法從樣本的“水果達(dá)人”中抽取人,求這人中消費金額不低于元的人數(shù);

(Ⅱ)從(Ⅰ)中的人中抽取人作為幸運客戶免費參加山村旅游項目,請列出所有的基本事件,并求人中至少有人購買金額不低于元的概率;

(Ⅲ)為吸引顧客,該村特推出兩種促銷方案,

方案一:每滿元可立減元;

方案二:金額超過元但又不超過元的部分打折,金額超過元但又不超過元的部分打折,金額超過元的部分打折.

若水果的價格為元/千克,某游客要購買千克,應(yīng)該選擇哪種方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在直線上的圓,其圓心到軸的距離恰好等于圓的半徑,在軸上截得弦長為,則圓的方程為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案