17.已知兩條直線l1:2x+y-2=0與l2:2x-my+4=0.
(1)若直線l1⊥l2,求直線l1與l2交點(diǎn)P的坐標(biāo);
(2)若l1,l2以及x軸圍成三角形的面積為1,求實(shí)數(shù)m的值.

分析 (1)若直線l1⊥l2,求出m,聯(lián)立兩條直線l1:2x+y-2=0與l2:2x-4y+4=0求直線l1與l2交點(diǎn)P的坐標(biāo);
(2)若l1,l2以及x軸圍成三角形的面積為1,求出三角形的高,即可求實(shí)數(shù)m的值.

解答 解:(1)∵直線l1⊥l2,∴4-m=0,∴m=4,
聯(lián)立兩條直線l1:2x+y-2=0與l2:2x-4y+4=0可得P(0.4,1.2);
(2)直線l1:2x+y-2=0與x軸的交點(diǎn)坐標(biāo)為(1,0),l2:2x-my+4=0與x軸的交點(diǎn)坐標(biāo)為(-2,0),
∵l1,l2以及x軸圍成三角形的面積為1,
∴三角形的高為$\frac{2}{3}$,
代入直線l1:2x+y-2=0可得x=$\frac{2}{3}$,
($\frac{2}{3}$,$\frac{2}{3}$)代入l2:2x-my+4=0可得m=8.

點(diǎn)評(píng) 本題考查直線方程,考查三角形面積的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$過(guò)點(diǎn)A(0,$\sqrt{2}$),離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)(1,0)的直線l交橢圓C于P,Q兩點(diǎn),N是直線x=1上的一點(diǎn),若△NPQ是等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示的多面體中,面ABCD是邊長(zhǎng)為2的正方形,平面PDCQ⊥平面ABCD,PD⊥DC,E,F(xiàn),G分別為棱BC,AD,PA的中點(diǎn).
(Ⅰ)求證:EG∥平面PDCQ;
(Ⅱ)已知二面角P-BF-C的余弦值為$\frac{\sqrt{6}}{6}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知Sn是數(shù)列{an}的前n項(xiàng)和,且${a_1}=1,{a_{n+1}}+{a_n}={2^{n+1}}(n∈{N^*})$
(Ⅰ)求證:$\left\{{{a_n}-\frac{{{2^{n+1}}}}{3}}\right\}$是等比數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=3nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一輛汽車(chē)在某段路程中的行駛速率與時(shí)間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說(shuō)明所求面積的實(shí)際含義;
(2)假設(shè)這輛汽車(chē)在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車(chē)在行駛這段路程時(shí)里程表讀數(shù)s(km)與時(shí)間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若a∈R+,則當(dāng)a+$\frac{1}{9a}$的最小值為m時(shí),不等式m${\;}^{{x}^{2}+4x+3}$<1的解集為{x|x<-3或x>-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,直線l是曲線y=f(x)在x=3處的切線,f'(x)表示函數(shù)f(x)的導(dǎo)函數(shù),則f(3)+f'(3)的值為$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)是定義在[-1,1]上的奇函數(shù),f(1)=1,且對(duì)任意的a、b∈[-1,1],當(dāng)a+b≠0時(shí),都有$\frac{f(a)+f(b)}{a+b}$>0
(1)若a,b∈[-1,1]且a-b≠0,求證:$\frac{f(a)-f(b)}{a-b}$>0,并據(jù)此說(shuō)明函數(shù)f(x)的單調(diào)性;
(2)解不等式f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x);
(3)若對(duì)于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,求負(fù)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中既是偶函數(shù),最小正周期又是π的是(  )
A.y=sin2xB.y=cosxC.y=tanxD.y=|tanx|

查看答案和解析>>

同步練習(xí)冊(cè)答案