已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為(為參數(shù)),點Q的極坐標為。
(1)化圓C的參數(shù)方程為極坐標方程;
(2)直線過點Q且與圓C交于M,N兩點,求當弦MN的長度為最小時,直線的直角坐標方程。
(1)(2)
【解析】
試題分析:(1) 先化參數(shù)方程為普通方程,然后利用平面直角坐標與極坐標互化公式:即可;(2)先把Q點坐標化為平面直角坐標,根據(jù)圓的相關知識明確:當直線⊥CQ時,MN的長度最小,然后利用斜率公式求出MN斜率.
試題解析:(Ⅰ)圓C的直角坐標方程為, 2分
又 4分
∴圓C的極坐標方程為 5分
(2)因為點Q的極坐標為,所以點Q的直角坐標為(2,-2) 7分
則點Q在圓C內,所以當直線⊥CQ時,MN的長度最小
又圓心C(1,-1),∴,
直線的斜率 9分
∴直線的方程為,即 10分
考點:(1)參數(shù)方程與普通方程;(2)平面直角坐標與極坐標;(3)圓的性質.
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
已知正四棱錐S—ABCD中,SA=2,那么當該棱錐的體積最大時,它的高為( )
A.1 B. C.2 D.3
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題
已知f(x)=+log2,則f+f+…+f的值為( )
A.1 B.2 C.2 013 D.2 014
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:填空題
設f(x)=sin 3x+cos 3x,若對任意實數(shù)x都有|f(x)|≤a,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題
命題“對任意x∈R,都有x2≥0”的否定為( )
A.對任意x∈R,都有x2<0
B.不存在x∈R,使得x2<0
C.存在x0∈R,使得x02≥0
D.存在x0∈R,使得x02<0
查看答案和解析>>
科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質量檢測理科數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列的前項和為,.
(1)求數(shù)列的通項公式;
(2)設log2an+1 ,求數(shù)列的前項和。
查看答案和解析>>
科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質量檢測理科數(shù)學試卷(解析版) 題型:選擇題
在的展開中,的冪指數(shù)是整數(shù)的項共有
A.6項 B.5項 C.4項 D.3項
查看答案和解析>>
科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質量檢測文科數(shù)學試卷(解析版) 題型:填空題
給出下列命題:
① 已知線性回歸方程,當變量增加2個單位,其預報值平均增加4個單位;
② 在進制計算中, ;
③ 若,且,則;
④ “”是“函數(shù)的最小正周期為4”的充要條件;
⑤ 設函數(shù)的最大值為M,最小值為m,則M+m=4027,其中正確命題的個數(shù)是 個。
查看答案和解析>>
科目:高中數(shù)學 來源:2014-2015學年河北省邯鄲市高二第一次調研數(shù)學試卷(解析版) 題型:解答題
如圖,為了測量河對岸A、B兩點間的距離,在河的這邊測得CD=km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B兩點間的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com