【題目】銅陵市出租車已于今年6月1日起調(diào)整運(yùn)價(jià),現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2.5km以內(nèi)(含2.5km)按起步價(jià)7元收取,超過2.5km后的路程按1.9元km收取,但超過8km后的路程需加收50%的返空費(fèi)(即單價(jià)為元).
(1)將某乘客搭乘一次出租車的費(fèi)用(單位:元)表示為行程x(,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準(zhǔn)備先乘一輛出租車行駛8km后,再換乘另一輛出租車完成余下行程,請(qǐng)問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(Ⅰ) 判斷函數(shù)在上的單調(diào)性;
(Ⅱ) 設(shè)函數(shù)的定義域?yàn)?/span>,且有極值點(diǎn).
(ⅰ) 試判斷當(dāng)時(shí), 是否滿足題目的條件,并說明理由;
(ⅱ) 設(shè)函數(shù)的極小值點(diǎn)為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1千多年.在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉臑指四個(gè)面均為直角三角形的四面體.如圖,在塹堵中,.
(1)求證:四棱錐為陽馬;并判斷四面體是否為鱉臑,若是,請(qǐng)寫出各個(gè)面的直角(要求寫出結(jié)論).
(2)若,當(dāng)陽馬體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國(guó)家提出的“大眾創(chuàng)業(yè),萬眾創(chuàng)新”的號(hào)召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè)。經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬元,每年生產(chǎn)萬件,需另投入流動(dòng)成本為萬元,且,每件產(chǎn)品售價(jià)為10元。經(jīng)市場(chǎng)分析,生產(chǎn)的產(chǎn)品當(dāng)年能全部售完。
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)
(2)年產(chǎn)量為多少萬件時(shí),小李在這一產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn),且與軸有唯一的交點(diǎn).
(1)求的表達(dá)式;
(2)設(shè)函數(shù),若上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),記此函數(shù)的最小值為,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市夏季某一天的溫度變化曲線,若該曲線近似地滿足函數(shù),則下列說法正確的是( )
A.該函數(shù)的周期是
B.該函數(shù)圖象的一條對(duì)稱軸是直線
C.該函數(shù)的解析式是
D.該市這一天中午時(shí)天氣的溫度大約是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)判斷正確的是______(寫出所有正確判斷的序號(hào).)
①函數(shù)是奇函數(shù),但不是偶函數(shù);
②函數(shù)與函數(shù)表示同一個(gè)函數(shù);
③已知函數(shù)圖象的一條對(duì)稱軸為,則的值為;
④設(shè)函數(shù),若關(guān)于的方程有四個(gè)不同的解,且,則的值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),直線:,圓:.
(1)求的取值范圍,并求出圓心坐標(biāo);
(2)若圓的半徑為1,過點(diǎn)作圓的切線,求切線的方程;
(3)有一動(dòng)圓的半徑為1,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com