【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設O為△ABC的外心,已知AB=3,AC=4,非零實數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

【答案】見解析

【解析】(1)∵a⊥c,∴2x-4=0,x=2,

∵b∥c,∴-4-2y=0,y=-2.

∴a=(2,1),b=(1,-2),a+b=(3,-1),

∴|a+b|=.

設a+b與c的夾角為θ,則cos θ=.

∵0≤θ≤π,∴θ=,即a+b與c的夾角為.

(2)設AC的中點為D,連接OD(圖略),

=x+y=x+2y,

又x+2y=1,∴O,B,D三點共線.

由O為△ABC外心,知OD⊥AC,BD⊥AC,

在Rt△ADB中,AB=3,AD=AC=2,所以cos ∠BAC=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如表:

方式

實施地點

大雨

中雨

小雨

模擬實驗總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),丙地只能是小雨或中雨即達到理想狀態(tài),記“甲、乙、丙三地中達到理想狀態(tài)的個數(shù)”為隨機變量,求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,求數(shù)列的通項公式.勤于思考的小紅設計了下面兩種解題思路,請你選擇其中一種并將其補充完整.

思路1:先設的值為1,根據(jù)已知條件,計算出_________, __________, _________

猜想: _______.

然后用數(shù)學歸納法證明.證明過程如下:

①當時,________________,猜想成立

②假設N*)時,猜想成立,即_______

那么,當時,由已知,得_________

,兩式相減并化簡,得_____________(用含的代數(shù)式表示).

所以,當時,猜想也成立.

根據(jù)①和②,可知猜想對任何N*都成立.

思路2:先設的值為1,根據(jù)已知條件,計算出_____________

由已知,寫出的關系式: _____________________

兩式相減,得的遞推關系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項公式____,進而得到____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點.

(1)在圖中作一個平面

,使得

,且平面

.(不必給出證明過程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A是由a-2,2a2+5a,12三個元素構成的,且-3∈A,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.

(1)求的直角坐標方程;

(2)直線為參數(shù))與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關心的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學習小組在某社區(qū)隨機抽取了50人進行調查,將調查情況進行整理后制成下表:

年齡

人數(shù)

4

5

8

5

3

年齡

人數(shù)

6

7

3

5

4

經(jīng)調查年齡在的被調查者中贊成“延遲退休”的人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調查者中各隨機選取2人,進行跟蹤調查.

(Ⅰ)求年齡在的被調查者中選取的2人都贊成“延遲退休”的概率;

(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止.設P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結論:①;②當時, ;③;④當秒時, ;⑤當的面積為時,時間的值是;其中正確的結論是( )

A. ①⑤ B. ②⑤ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員名,其中種子選手名;乙協(xié)會的運動員名,其中種子選手名.從這名運動員中隨機選擇人參加比賽.

(1)設為事件“選出的人中恰有名種子選手,且這名種子選手來自同一個協(xié)會”求事件發(fā)生的概率;

(2)設為選出的人中種子選手的人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案