【題目】已知函數(shù).
(1)當時,若在區(qū)間上的最小值為,求的取值范圍;
(2)若對任意,且恒成立,求的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)求出的零點,通過討論與區(qū)間的關系,得到其單調(diào)性,找到最小值點,求出最小值,即得的取值范圍;(2)根據(jù)可構造函數(shù),題中的條件本質上就是給出了函數(shù)在單調(diào)遞增,求參數(shù)的范圍,即在上恒成立,分類討論即可.
試題解析:
(1)函數(shù)的定義域是.當時,
,
令,得,所以或.
當,即時,在上單調(diào)遞增,所以在上的最小值是;
當時,在上的最小值是,不合題意;
當時,在上單調(diào)遞減,所以在上的最小值是,不合題意,
綜上:.
(2)設,即,
只要在上單調(diào)遞增即可,而,
當時,,此時在上單調(diào)遞增;
當時,只需在上恒成立,因為,只要,
則需要,對于函數(shù),過定點,對稱軸,只需,
即,綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,假命題是_________ (填序號).
①經(jīng)過定點P(x0,y0)的直線不一定都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③與兩條坐標軸都相交的直線不一定可以用方程表示;
④經(jīng)過點Q(0,b)的直線都可以表示為y=kx+b.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五棱錐中,平面,∥,∥,∥,, ,,是等腰三角形.
(1)求證:平面平面;
(2)求側棱上是否存在點,使得與平面所成角大小為,若存在,求出點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: ,焦點, 為坐標原點,直線(不垂直軸)過點且與拋物線交于兩點,直線與的斜率之積為.
(1)求拋物線的方程;
(2)若為線段的中點,射線交拋物線于點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:直線與圓有兩個交點;命題:.
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)f(x)的解析式;
(2)將圖象上所有點向左平行移動個單位長度,得到的圖象,求的圖象離原點O最近的對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當時,(其中,是自然對數(shù)的底數(shù),=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若時,方程有實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com