【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;
(2)點F在BE上.若DE∥平面ACF,求 的值.

【答案】
(1)證明:因為ABCD為矩形,所以AB⊥BC.

因為平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,AB平面ABCD,

所以AB⊥平面BCE.

因為CE平面BCE,所以CE⊥AB.

因為CE⊥BE,AB平面ABE,BE平面ABE,AB∩BE=B,

所以CE⊥平面ABE.

因為CE平面AEC,所以平面AEC⊥平面ABE


(2)解:連接BD交AC于點O,連接OF.

因為DE∥平面ACF,DE平面BDE,平面ACF∩平面BDE=OF,

所以DE∥OF.

又因為矩形ABCD中,O為BD中點,

所以F為BE中點,即 =


【解析】(1)根據(jù)平面ABCD⊥平面BCE,利用面面垂直的性質(zhì)可得AB⊥平面BCE,從而可得CE⊥AB,由CE⊥BE,根據(jù)線面垂直的判定可得CE⊥平面ABE,從而可得平面AEC⊥平面ABE;(2)連接BD交AC于點O,連接OF.根據(jù)DE∥平面ACF,可得DE∥OF,根據(jù)O為BD中點,可得F為BE中點,從而可得結論.
【考點精析】利用直線與平面平行的性質(zhì)和平面與平面垂直的判定對題目進行判斷即可得到答案,需要熟知一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行;一個平面過另一個平面的垂線,則這兩個平面垂直.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)試討論的單調(diào)性;

2)若(實數(shù)c是與a無關的常數(shù)),當函數(shù)有三個不同的零點時,a的取值范圍恰好是,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=loga(x﹣3a)(a>0且a≠1),當點P(x,y)是函數(shù)y=f(x)圖象上的點時,點
Q(x﹣2a,﹣y)是函數(shù)y=g(x)圖象上的點.
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當x∈[a+2,a+3]時,恒有|f(x)﹣g(x)|≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為a的正方體ABCD﹣A1B1C1D1中,E、F分別是AB、BC的中點,EF與BD交于點G,M為棱BB1上一點.
(1)證明:EF∥平面 A1C1D;
(2)當B1M:MB的值為多少時,D1M⊥平面 EFB1 , 證明之;
(3)求點D到平面 EFB1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設f(x)=
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;
(3)若f(|2x﹣1|)+k ﹣3k=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;(2)求函數(shù)上的最大值;

(3)求證:存在唯一的,使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓(x+2)2+y2=5關于直線x﹣y+1=0對稱的圓的方程為(
A.(x﹣2)2+y2=5
B.x2+(y﹣2)2=5
C.(x﹣1)2+(y﹣1)2=5
D.(x+1)2+(y+1)2=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x+1)是定義在R上的周期為2的偶函數(shù),當x∈[1,2)時,f(x)=log2x,設a=f( ), ,c=f(1),則a,b,c的大小關系為(
A.a<c<b
B.c<a<b
C.b<c<a
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , , 為線段上的點.

(1)證明: 平面;

(2)若的中點,求與平面所成的角的正切值.

查看答案和解析>>

同步練習冊答案