【題目】若圓上至少有三個(gè)不同的點(diǎn)到直線的距離為,則直線l的傾斜角的取值范圍是( )

A.B.

C.D.

【答案】D

【解析】

把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心A的坐標(biāo)和半徑r的值,由圓A上有且僅有三個(gè)不同點(diǎn)到直線l的距離為,則圓心A到直線l的距離等于r,故利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的取值范圍,然后根據(jù)直線斜率與傾斜角的關(guān)系,利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值即可求出直線l的傾斜角.

由圓的標(biāo)準(zhǔn)方程(x22+y2218,則圓心為(22),半徑為,設(shè)直線ykx

圓上至少有三個(gè)不同的點(diǎn)到直線的距離為,則圓心到直線的距離應(yīng)不大于等于r=,

整理得:k24k+1≤0,解得:2k≤2,

tan15°tan45°30°2

tan75°tan45°+30°2,

ktanα,則直線l的傾斜角的取值范圍,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),若滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界

1)設(shè),判斷上是否是有界函數(shù),若是,說明理由,并寫出所有上界的值的集合;若不是,也請(qǐng)說明理由.

2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 命題,則的逆命題是真命題

B. 命題存在的否定是:任意

C. 命題“pq”為真命題,則命題“p”和命題“q”均為真命題

D. 已知,則的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)從坐標(biāo)原點(diǎn)出發(fā)沿著拋物線移動(dòng)到點(diǎn),則在移動(dòng)過程中當(dāng)為最大時(shí),點(diǎn)的橫坐標(biāo)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,EPB的中點(diǎn),FDC上的點(diǎn)且DF=AB,PH△PAD邊上的高.

1)證明:PH⊥平面ABCD;

2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;

3)證明:EF⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD

)證明AB⊥平面VAD

)求面VAD與面VDB所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為a分別是棱的中點(diǎn),過點(diǎn)的平面分別與棱交于點(diǎn),設(shè),給出以下四個(gè)命題:

1)平面與平面所成角的最大值為

2)四邊形的面積的最小值為

3)四棱錐的體積為;

4)點(diǎn)到平面的距離的最大值為

其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),焦點(diǎn)為,直線交拋物線,兩點(diǎn),的中點(diǎn),且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點(diǎn)是橢圓的頂點(diǎn).

(1)求的標(biāo)準(zhǔn)方程;

(2)上不同于的兩點(diǎn), 滿足,且直線相切,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案