【題目】若函數(shù)f(x)= +bx+c有極值點(diǎn)x1 , x2(x1<x2),且f(x1)=x1 , 則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實(shí)數(shù)根的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:函數(shù)f(x)=x3+ ax2+bx+c有兩個(gè)極值點(diǎn)x1 , x2 , ∴f′(x)=3x2+ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=a2﹣12b>0.
而方程3(f(x))2+af(x)+b=0的△1=△>0,
∴此方程有兩解且f(x)=x1或x2 ,
不妨取0<x1<x2 , f(x1)>0.
①把y=f(x)向下平移x1個(gè)單位即可得到y(tǒng)=f(x)﹣x1的圖象,
∵f(x1)=x1 , 可知方程f(x)=x1有兩解.
②把y=f(x)向下平移x2個(gè)單位即可得到y(tǒng)=f(x)﹣x2的圖象,∵f(x1)=x1 , ∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.
綜上①②可知:方程f(x)=x1或f(x)=x2 . 只有3個(gè)實(shí)數(shù)解.即關(guān)于x的方程3(f(x))2+af(x)+b=0的只有3不同實(shí)根.
故選:C.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng) ,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ , ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理中是演繹推理的序號為(
A.由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電
B.猜想數(shù)列 {an}的通項(xiàng)公式為 (n∈N+
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標(biāo)系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測空間直角坐標(biāo)系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi) (單位:千元)對年銷售量 (單位:t)和年利潤 (單位:千元)的影響.對近8年的年宣傳費(fèi)和年銷售量 (i12,8)數(shù)據(jù)作了初步處理,得到右面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,

(1)根據(jù)散點(diǎn)圖判斷, 哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的年利潤的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費(fèi)=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?

②年宣傳費(fèi)為何值時(shí),年利潤的預(yù)報(bào)值最大?

附:對于一組數(shù)據(jù), ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2 , a3 , a7成等比數(shù)列.
(Ⅰ)求通項(xiàng)公式an
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=|2n﹣5|an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知圓 ,點(diǎn),點(diǎn)),以為圓心, 為半徑作圓,交圓于點(diǎn),且的平分線交線段于點(diǎn).

(1)當(dāng)變化時(shí),點(diǎn)始終在某圓錐曲線上運(yùn)動,求曲線的方程;

(2)已知直線 過點(diǎn) ,且與曲線交于 兩點(diǎn),記面積為, 面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F(xiàn)為CE的中點(diǎn),求證:

(1)AE∥平面BDF;
(2)平面BDF⊥平面ACE.

查看答案和解析>>

同步練習(xí)冊答案