【題目】[2018·滄州質(zhì)檢]對于橢圓,有如下性質(zhì):若點(diǎn)是橢圓上的點(diǎn),則橢圓在該點(diǎn)處的切線方程為.利用此結(jié)論解答下列問題.點(diǎn)是橢圓上的點(diǎn),并且橢圓在點(diǎn)處的切線斜率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若動(dòng)點(diǎn)在直線上,經(jīng)過點(diǎn)的直線與橢圓相切,切點(diǎn)分別為,.求證:直線必經(jīng)過一定點(diǎn).

【答案】(1)(2)直線必經(jīng)過一定點(diǎn)

【解析】試題分析:

()由題意結(jié)合所給的知識(shí)可得橢圓在點(diǎn)處的切線斜率為..據(jù)此解方程組可得橢圓的方程為;

()設(shè),,切線,切線.由兩條切線都經(jīng)過同一點(diǎn)可得直線的方程為.據(jù)此整理計(jì)算有.求解方程組可得直線必經(jīng)過一定點(diǎn).

試題解析:

∵橢圓在點(diǎn)處的切線方程為

其斜率為,

.

又點(diǎn)在橢圓上,

.

解得,.

∴橢圓的方程為

Ⅱ)設(shè),,,

則切線,切線.

都經(jīng)過點(diǎn),

,.

即直線的方程為.

,

.

∴直線必經(jīng)過一定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年元旦期間,某運(yùn)動(dòng)服裝專賣店舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過400元均可參加1次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖),轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針指向哪個(gè)扇形區(qū)域,則顧客可直接獲得該區(qū)域?qū)?yīng)面額(單位:元)的現(xiàn)金優(yōu)惠,且允許顧客轉(zhuǎn)動(dòng)3次.

方案二:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖〕,轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí)指針若指向陰影部分,則未中獎(jiǎng),若指向白色區(qū)域,則顧客可直接獲得40元現(xiàn)金,且允許顧客轉(zhuǎn)動(dòng)3次.

(1)若兩位顧客均獲得1次抽獎(jiǎng)機(jī)會(huì),且都選擇抽獎(jiǎng)方案一,試求這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;

(2)若某顧客恰好獲得1次抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得現(xiàn)金獎(jiǎng)勵(lì)的數(shù)學(xué)期望;

②從概率的角度比較①中該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法錯(cuò)誤的是

A. 的最小值點(diǎn)

B. 函數(shù)有且只有1個(gè)零點(diǎn)

C. 存在正實(shí)數(shù),使得恒成立

D. 對任意兩個(gè)不相等的正實(shí)數(shù),若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線.

(1)求以右焦點(diǎn)為圓心,與雙曲線的漸近線相切的圓的方程;

(2)若經(jīng)過點(diǎn)的直線與雙曲線的右支交于不同兩點(diǎn),求線段的中垂線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)研究證實(shí),二氧化碳等溫空氣體的排放(簡稱碳排放)對全球氣候和生態(tài)環(huán)境產(chǎn)生了負(fù)面影響,環(huán)境部門對市每年的碳排放總量規(guī)定不能超過萬噸,否則將采取緊急限排措施.已知年的碳排放總量為萬噸,通過技術(shù)改造和倡導(dǎo)低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少.同時(shí),因經(jīng)濟(jì)發(fā)展和人口增加等因素,每年又新增加碳排放量萬噸.

1)求年的碳排放總量(用含的式子表示);

2)若市永遠(yuǎn)不需要采取緊急限排措施,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

1)若,求過點(diǎn)且與曲線相切的直線方程;

2)若函數(shù)有兩個(gè)零點(diǎn).

的取值范圍;

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“日行一萬步,健康你一生”的養(yǎng)生觀念已經(jīng)深入人心,由于研究性學(xué)習(xí)的需要,某大學(xué)生收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定甲、乙兩個(gè)班級名成員一天行走的步數(shù),然后采用分層抽樣的方法按照 , , 分層抽取了20名成員的步數(shù),并繪制了如下尚不完整的莖葉圖(單位:千步):

已知甲、乙兩班行走步數(shù)的平均值都是44千步.

(1)求的值;

(2)(。┤,求甲、乙兩個(gè)班級100名成員中行走步數(shù)在, , 各層的人數(shù);

(ⅱ)若估計(jì)該團(tuán)隊(duì)中一天行走步數(shù)少于40千步的人數(shù)比處于千步的人數(shù)少12人,求的值.

查看答案和解析>>

同步練習(xí)冊答案