【題目】未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強告訴南方日報記者.相對于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機解決所有,而現(xiàn)在連手機都不需要了,畢竟,手機支付還需要攜帶手機,打開二維碼也需要時間和手機信號.刷臉支付將會替代手機,成為新的支付方式.某地從大型超市門口隨機抽取50名顧客進行了調(diào)查,得到了如下列聯(lián)表:

男性

女性

總計

刷臉支付

18

25

非刷臉支付

13

總計

50

1)請將上面的列聯(lián)表補充完整,并判斷是否有95%的把握認為使用刷臉支付與性別有關(guān)?

2)從參加調(diào)查且使用刷臉支付的顧客中隨機抽取2人參加抽獎活動,抽獎活動規(guī)則如下:

一等獎中獎概率為0.25,獎品為10元購物券張(,且),二等獎中獎概率0.25,獎品為10元購物券兩張,三等獎中獎概率0.5,獎品為10元購物券一張,每位顧客是否中獎相互獨立,記參與抽獎的兩位顧客中獎購物券金額總和為元,若要使的均值不低于50元,求的最小值.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.869

【答案】1)列聯(lián)表見解析,沒有95%的把握認為使用刷臉支付與性別是否有關(guān)(26

【解析】

1)完善列聯(lián)表,計算,得到答案.

2的可能取值為,,40,30,20,計算概率得到分布列,,得到答案.

1)列聯(lián)表補充如下:

男性

女性

總計

刷臉支付

18

7

25

非刷臉支付

12

13

25

總計

30

20

50

,

所以沒有95%的把握認為使用刷臉支付與性別是否有關(guān).

2)由題意可知,的可能取值為,,40,30,20

;

;;

;

所以的分布列為

40

30

20

所以.

解得,的最小值為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸為極軸建立極坐標系,曲線的極坐標方程為為常數(shù),且),直線與曲線交于兩點.

1)若,求實數(shù)的值;

2)若點的直角坐標為,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的直角坐標方程及直線的普通方程;

2)設(shè)直線與曲線交于,兩點(點在點左邊)與直線交于點.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1a0,b0)的左右焦點分別為F1F2,點O為坐標原點,點P在雙曲線的右支上,且滿足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個交點,則雙曲線C的離心率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=alnx21在定義域(0,2)內(nèi)有兩個極值點.

1)求實數(shù)a的取值范圍;

2)設(shè)x1x2fx)的兩個極值點,求證:lnx1+lnx2+lna0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=exax+aaR),其圖象與x軸交于Ax1,0),Bx2,0)兩點,且x1x2

1)求a的取值范圍;

2)證明:f′()<0f′(x)為函數(shù)fx)的導(dǎo)函數(shù));

3)設(shè)點C在函數(shù)yfx)的圖象上,且△ABC為等腰直角三角形,記t,求(a1)(t1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐的底面邊長為,、分別為、的中點.

1)當時,證明:平面平面;

2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面平面,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自從新型冠狀病毒爆發(fā)以來,全國范圍內(nèi)采取了積極的措施進行防控,并及時通報各項數(shù)據(jù)以便公眾了解情況,做好防護.以下是湖南省2020123-31日這9天的新增確診人數(shù).

日期

23

24

25

26

27

28

29

30

31

時間

1

2

3

4

5

6

7

8

9

新增確診人數(shù)

15

19

26

31

43

78

56

55

57

經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個病毒的攜帶者在病情發(fā)作之前通常有長達14天的潛伏期,這個期間如果不采取防護措施,則感染者與一位健康者接觸時間超過15秒,就有可能傳染病毒.

1)將123日作為第1天,連續(xù)9天的時間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對疫情進行分析.對上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計量的值(部分數(shù)據(jù)已作近似處理):.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測第10天新增確診人數(shù).

2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

同步練習(xí)冊答案