【題目】已知圓P過(guò).

1)求圓P的方程;

2)若過(guò)點(diǎn)的直線l被圓P所截得的弦長(zhǎng)為8,求直線l的方程.

【答案】1;(2.

【解析】

(1)設(shè)出圓的一般方程,將三點(diǎn)坐標(biāo)代入得方程組,解出即可.
(2) 由半徑、半弦長(zhǎng)、弦心距構(gòu)成的直角三角形可得圓心到直線的距離為3,分直線的斜率存在和不存在進(jìn)行計(jì)算即可.

1)設(shè)圓P的方程為:.

A,B,C都在圓上,

,解得.

∴所求圓P的方程為.

2)由,知圓心,半徑,

由直線l被圓p截得的弦長(zhǎng)為8,得圓心距

當(dāng)直線lx軸不垂直時(shí),設(shè)直線l方程為:,

,

∴圓心P到直線l距離,化簡(jiǎn)得,則.

∴直線l方程為:,即

當(dāng)直線軸時(shí),直線l方程為,

代入圓方程得,解得,

∴弦長(zhǎng)仍為8,滿足題意.

綜上,直線l的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司的甲、乙兩名工程師因?yàn)楣ぷ餍枰,各自選購(gòu)一臺(tái)筆記本電腦.該公司提供了三款筆記本電腦作為備選,這三款筆記本電腦在某電商平臺(tái)的銷(xiāo)量和用戶評(píng)分如下表所示:

型號(hào)

銷(xiāo)量(臺(tái))

2000

2000

4000

用戶評(píng)分

8

6.5

9.5

若甲選購(gòu)某款筆記本電腦的概率與對(duì)應(yīng)的銷(xiāo)量成正比,乙選購(gòu)某款筆記本電腦的概率與對(duì)應(yīng)的用戶評(píng)分減去5的值成正比,且他們兩人選購(gòu)筆記本電腦互不影響.

(1)求甲、乙兩人選購(gòu)不同款筆記本電腦的概率;

(2)若公司給購(gòu)買(mǎi)這三款筆記本電腦的員工一定的補(bǔ)貼,補(bǔ)貼標(biāo)準(zhǔn)如下表:

型號(hào)

補(bǔ)貼(千元)

3

4

5

記甲、乙兩人獲得的公司補(bǔ)貼之和為千元,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,,且平面平面.

1)證明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求證:當(dāng)時(shí),

2)若函數(shù)與函數(shù)有兩個(gè)不同交點(diǎn)其中,證明:存在,使得處的切線斜率與處的切線斜率相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知拋物線Cy22pxp0)的焦點(diǎn)為F,過(guò)F垂直于x軸的直線與C相交于A、B兩點(diǎn),△AOB的面積為2

1)求拋物線C的方程;

2)若過(guò)P,0)的直線與C相交于M,N兩點(diǎn),且2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線在點(diǎn)處的切線與直線平行,求的值,并求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對(duì)任意,都有恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國(guó)古代四大發(fā)明,此說(shuō)法最早由英國(guó)漢學(xué)家艾約瑟提出并為后來(lái)許多中國(guó)的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對(duì)中國(guó)古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動(dòng)作用.某小學(xué)三年級(jí)共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問(wèn)中國(guó)古代四大發(fā)明,能說(shuō)出兩種發(fā)明的有45人,能說(shuō)出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級(jí)的500名學(xué)生中,對(duì)四大發(fā)明只能說(shuō)出一種或一種也說(shuō)不出的有(

A.69B.84C.108D.115

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

40

女生

30

合計(jì)

100

且已知在個(gè)人中隨機(jī)抽取人,抽到喜歡游泳的學(xué)生的概率為.

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐S—ABCD中,底面ABCD,底面ABCD是矩形,且,ESA的中點(diǎn).

1)求證:平面BED平面SAB

2)求平面BED與平面SBC所成二面角(銳角)的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案